Step |
Hyp |
Ref |
Expression |
1 |
|
odf1.1 |
|- X = ( Base ` G ) |
2 |
|
odf1.2 |
|- O = ( od ` G ) |
3 |
|
odf1.3 |
|- .x. = ( .g ` G ) |
4 |
|
odf1.4 |
|- F = ( x e. ZZ |-> ( x .x. A ) ) |
5 |
1 3
|
mulgcl |
|- ( ( G e. Grp /\ x e. ZZ /\ A e. X ) -> ( x .x. A ) e. X ) |
6 |
5
|
3expa |
|- ( ( ( G e. Grp /\ x e. ZZ ) /\ A e. X ) -> ( x .x. A ) e. X ) |
7 |
6
|
an32s |
|- ( ( ( G e. Grp /\ A e. X ) /\ x e. ZZ ) -> ( x .x. A ) e. X ) |
8 |
7 4
|
fmptd |
|- ( ( G e. Grp /\ A e. X ) -> F : ZZ --> X ) |
9 |
8
|
adantr |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) -> F : ZZ --> X ) |
10 |
|
oveq1 |
|- ( x = y -> ( x .x. A ) = ( y .x. A ) ) |
11 |
|
ovex |
|- ( x .x. A ) e. _V |
12 |
10 4 11
|
fvmpt3i |
|- ( y e. ZZ -> ( F ` y ) = ( y .x. A ) ) |
13 |
|
oveq1 |
|- ( x = z -> ( x .x. A ) = ( z .x. A ) ) |
14 |
13 4 11
|
fvmpt3i |
|- ( z e. ZZ -> ( F ` z ) = ( z .x. A ) ) |
15 |
12 14
|
eqeqan12d |
|- ( ( y e. ZZ /\ z e. ZZ ) -> ( ( F ` y ) = ( F ` z ) <-> ( y .x. A ) = ( z .x. A ) ) ) |
16 |
15
|
adantl |
|- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( F ` y ) = ( F ` z ) <-> ( y .x. A ) = ( z .x. A ) ) ) |
17 |
|
simplr |
|- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( O ` A ) = 0 ) |
18 |
17
|
breq1d |
|- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( O ` A ) || ( y - z ) <-> 0 || ( y - z ) ) ) |
19 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
20 |
1 2 3 19
|
odcong |
|- ( ( G e. Grp /\ A e. X /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( O ` A ) || ( y - z ) <-> ( y .x. A ) = ( z .x. A ) ) ) |
21 |
20
|
ad4ant124 |
|- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( O ` A ) || ( y - z ) <-> ( y .x. A ) = ( z .x. A ) ) ) |
22 |
|
zsubcl |
|- ( ( y e. ZZ /\ z e. ZZ ) -> ( y - z ) e. ZZ ) |
23 |
22
|
adantl |
|- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( y - z ) e. ZZ ) |
24 |
|
0dvds |
|- ( ( y - z ) e. ZZ -> ( 0 || ( y - z ) <-> ( y - z ) = 0 ) ) |
25 |
23 24
|
syl |
|- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( 0 || ( y - z ) <-> ( y - z ) = 0 ) ) |
26 |
18 21 25
|
3bitr3d |
|- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( y .x. A ) = ( z .x. A ) <-> ( y - z ) = 0 ) ) |
27 |
|
zcn |
|- ( y e. ZZ -> y e. CC ) |
28 |
|
zcn |
|- ( z e. ZZ -> z e. CC ) |
29 |
|
subeq0 |
|- ( ( y e. CC /\ z e. CC ) -> ( ( y - z ) = 0 <-> y = z ) ) |
30 |
27 28 29
|
syl2an |
|- ( ( y e. ZZ /\ z e. ZZ ) -> ( ( y - z ) = 0 <-> y = z ) ) |
31 |
30
|
adantl |
|- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( y - z ) = 0 <-> y = z ) ) |
32 |
16 26 31
|
3bitrd |
|- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( F ` y ) = ( F ` z ) <-> y = z ) ) |
33 |
32
|
biimpd |
|- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( F ` y ) = ( F ` z ) -> y = z ) ) |
34 |
33
|
ralrimivva |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) -> A. y e. ZZ A. z e. ZZ ( ( F ` y ) = ( F ` z ) -> y = z ) ) |
35 |
|
dff13 |
|- ( F : ZZ -1-1-> X <-> ( F : ZZ --> X /\ A. y e. ZZ A. z e. ZZ ( ( F ` y ) = ( F ` z ) -> y = z ) ) ) |
36 |
9 34 35
|
sylanbrc |
|- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) -> F : ZZ -1-1-> X ) |
37 |
1 2 3 19
|
odid |
|- ( A e. X -> ( ( O ` A ) .x. A ) = ( 0g ` G ) ) |
38 |
1 19 3
|
mulg0 |
|- ( A e. X -> ( 0 .x. A ) = ( 0g ` G ) ) |
39 |
37 38
|
eqtr4d |
|- ( A e. X -> ( ( O ` A ) .x. A ) = ( 0 .x. A ) ) |
40 |
39
|
ad2antlr |
|- ( ( ( G e. Grp /\ A e. X ) /\ F : ZZ -1-1-> X ) -> ( ( O ` A ) .x. A ) = ( 0 .x. A ) ) |
41 |
1 2
|
odcl |
|- ( A e. X -> ( O ` A ) e. NN0 ) |
42 |
41
|
ad2antlr |
|- ( ( ( G e. Grp /\ A e. X ) /\ F : ZZ -1-1-> X ) -> ( O ` A ) e. NN0 ) |
43 |
42
|
nn0zd |
|- ( ( ( G e. Grp /\ A e. X ) /\ F : ZZ -1-1-> X ) -> ( O ` A ) e. ZZ ) |
44 |
|
oveq1 |
|- ( x = ( O ` A ) -> ( x .x. A ) = ( ( O ` A ) .x. A ) ) |
45 |
44 4 11
|
fvmpt3i |
|- ( ( O ` A ) e. ZZ -> ( F ` ( O ` A ) ) = ( ( O ` A ) .x. A ) ) |
46 |
43 45
|
syl |
|- ( ( ( G e. Grp /\ A e. X ) /\ F : ZZ -1-1-> X ) -> ( F ` ( O ` A ) ) = ( ( O ` A ) .x. A ) ) |
47 |
|
0zd |
|- ( ( ( G e. Grp /\ A e. X ) /\ F : ZZ -1-1-> X ) -> 0 e. ZZ ) |
48 |
|
oveq1 |
|- ( x = 0 -> ( x .x. A ) = ( 0 .x. A ) ) |
49 |
48 4 11
|
fvmpt3i |
|- ( 0 e. ZZ -> ( F ` 0 ) = ( 0 .x. A ) ) |
50 |
47 49
|
syl |
|- ( ( ( G e. Grp /\ A e. X ) /\ F : ZZ -1-1-> X ) -> ( F ` 0 ) = ( 0 .x. A ) ) |
51 |
40 46 50
|
3eqtr4d |
|- ( ( ( G e. Grp /\ A e. X ) /\ F : ZZ -1-1-> X ) -> ( F ` ( O ` A ) ) = ( F ` 0 ) ) |
52 |
|
simpr |
|- ( ( ( G e. Grp /\ A e. X ) /\ F : ZZ -1-1-> X ) -> F : ZZ -1-1-> X ) |
53 |
|
f1fveq |
|- ( ( F : ZZ -1-1-> X /\ ( ( O ` A ) e. ZZ /\ 0 e. ZZ ) ) -> ( ( F ` ( O ` A ) ) = ( F ` 0 ) <-> ( O ` A ) = 0 ) ) |
54 |
52 43 47 53
|
syl12anc |
|- ( ( ( G e. Grp /\ A e. X ) /\ F : ZZ -1-1-> X ) -> ( ( F ` ( O ` A ) ) = ( F ` 0 ) <-> ( O ` A ) = 0 ) ) |
55 |
51 54
|
mpbid |
|- ( ( ( G e. Grp /\ A e. X ) /\ F : ZZ -1-1-> X ) -> ( O ` A ) = 0 ) |
56 |
36 55
|
impbida |
|- ( ( G e. Grp /\ A e. X ) -> ( ( O ` A ) = 0 <-> F : ZZ -1-1-> X ) ) |