| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odf1o1.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | odf1o1.t |  |-  .x. = ( .g ` G ) | 
						
							| 3 |  | odf1o1.o |  |-  O = ( od ` G ) | 
						
							| 4 |  | odf1o1.k |  |-  K = ( mrCls ` ( SubGrp ` G ) ) | 
						
							| 5 |  | simpl1 |  |-  ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> G e. Grp ) | 
						
							| 6 | 1 | subgacs |  |-  ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` X ) ) | 
						
							| 7 |  | acsmre |  |-  ( ( SubGrp ` G ) e. ( ACS ` X ) -> ( SubGrp ` G ) e. ( Moore ` X ) ) | 
						
							| 8 | 5 6 7 | 3syl |  |-  ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> ( SubGrp ` G ) e. ( Moore ` X ) ) | 
						
							| 9 |  | simpl2 |  |-  ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> A e. X ) | 
						
							| 10 | 9 | snssd |  |-  ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> { A } C_ X ) | 
						
							| 11 | 4 | mrccl |  |-  ( ( ( SubGrp ` G ) e. ( Moore ` X ) /\ { A } C_ X ) -> ( K ` { A } ) e. ( SubGrp ` G ) ) | 
						
							| 12 | 8 10 11 | syl2anc |  |-  ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> ( K ` { A } ) e. ( SubGrp ` G ) ) | 
						
							| 13 |  | simpr |  |-  ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> x e. ZZ ) | 
						
							| 14 | 8 4 10 | mrcssidd |  |-  ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> { A } C_ ( K ` { A } ) ) | 
						
							| 15 |  | snidg |  |-  ( A e. X -> A e. { A } ) | 
						
							| 16 | 9 15 | syl |  |-  ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> A e. { A } ) | 
						
							| 17 | 14 16 | sseldd |  |-  ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> A e. ( K ` { A } ) ) | 
						
							| 18 | 2 | subgmulgcl |  |-  ( ( ( K ` { A } ) e. ( SubGrp ` G ) /\ x e. ZZ /\ A e. ( K ` { A } ) ) -> ( x .x. A ) e. ( K ` { A } ) ) | 
						
							| 19 | 12 13 17 18 | syl3anc |  |-  ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ x e. ZZ ) -> ( x .x. A ) e. ( K ` { A } ) ) | 
						
							| 20 | 19 | ex |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( x e. ZZ -> ( x .x. A ) e. ( K ` { A } ) ) ) | 
						
							| 21 |  | simpl3 |  |-  ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( O ` A ) = 0 ) | 
						
							| 22 | 21 | breq1d |  |-  ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( O ` A ) || ( x - y ) <-> 0 || ( x - y ) ) ) | 
						
							| 23 |  | zsubcl |  |-  ( ( x e. ZZ /\ y e. ZZ ) -> ( x - y ) e. ZZ ) | 
						
							| 24 | 23 | adantl |  |-  ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x - y ) e. ZZ ) | 
						
							| 25 |  | 0dvds |  |-  ( ( x - y ) e. ZZ -> ( 0 || ( x - y ) <-> ( x - y ) = 0 ) ) | 
						
							| 26 | 24 25 | syl |  |-  ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( 0 || ( x - y ) <-> ( x - y ) = 0 ) ) | 
						
							| 27 | 22 26 | bitrd |  |-  ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( O ` A ) || ( x - y ) <-> ( x - y ) = 0 ) ) | 
						
							| 28 |  | simpl1 |  |-  ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> G e. Grp ) | 
						
							| 29 |  | simpl2 |  |-  ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> A e. X ) | 
						
							| 30 |  | simprl |  |-  ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> x e. ZZ ) | 
						
							| 31 |  | simprr |  |-  ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> y e. ZZ ) | 
						
							| 32 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 33 | 1 3 2 32 | odcong |  |-  ( ( G e. Grp /\ A e. X /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( O ` A ) || ( x - y ) <-> ( x .x. A ) = ( y .x. A ) ) ) | 
						
							| 34 | 28 29 30 31 33 | syl112anc |  |-  ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( O ` A ) || ( x - y ) <-> ( x .x. A ) = ( y .x. A ) ) ) | 
						
							| 35 |  | zcn |  |-  ( x e. ZZ -> x e. CC ) | 
						
							| 36 |  | zcn |  |-  ( y e. ZZ -> y e. CC ) | 
						
							| 37 |  | subeq0 |  |-  ( ( x e. CC /\ y e. CC ) -> ( ( x - y ) = 0 <-> x = y ) ) | 
						
							| 38 | 35 36 37 | syl2an |  |-  ( ( x e. ZZ /\ y e. ZZ ) -> ( ( x - y ) = 0 <-> x = y ) ) | 
						
							| 39 | 38 | adantl |  |-  ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x - y ) = 0 <-> x = y ) ) | 
						
							| 40 | 27 34 39 | 3bitr3d |  |-  ( ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( x .x. A ) = ( y .x. A ) <-> x = y ) ) | 
						
							| 41 | 40 | ex |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( ( x e. ZZ /\ y e. ZZ ) -> ( ( x .x. A ) = ( y .x. A ) <-> x = y ) ) ) | 
						
							| 42 | 20 41 | dom2lem |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( x e. ZZ |-> ( x .x. A ) ) : ZZ -1-1-> ( K ` { A } ) ) | 
						
							| 43 | 19 | fmpttd |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( x e. ZZ |-> ( x .x. A ) ) : ZZ --> ( K ` { A } ) ) | 
						
							| 44 |  | eqid |  |-  ( x e. ZZ |-> ( x .x. A ) ) = ( x e. ZZ |-> ( x .x. A ) ) | 
						
							| 45 | 1 2 44 4 | cycsubg2 |  |-  ( ( G e. Grp /\ A e. X ) -> ( K ` { A } ) = ran ( x e. ZZ |-> ( x .x. A ) ) ) | 
						
							| 46 | 45 | 3adant3 |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( K ` { A } ) = ran ( x e. ZZ |-> ( x .x. A ) ) ) | 
						
							| 47 | 46 | eqcomd |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ran ( x e. ZZ |-> ( x .x. A ) ) = ( K ` { A } ) ) | 
						
							| 48 |  | dffo2 |  |-  ( ( x e. ZZ |-> ( x .x. A ) ) : ZZ -onto-> ( K ` { A } ) <-> ( ( x e. ZZ |-> ( x .x. A ) ) : ZZ --> ( K ` { A } ) /\ ran ( x e. ZZ |-> ( x .x. A ) ) = ( K ` { A } ) ) ) | 
						
							| 49 | 43 47 48 | sylanbrc |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( x e. ZZ |-> ( x .x. A ) ) : ZZ -onto-> ( K ` { A } ) ) | 
						
							| 50 |  | df-f1o |  |-  ( ( x e. ZZ |-> ( x .x. A ) ) : ZZ -1-1-onto-> ( K ` { A } ) <-> ( ( x e. ZZ |-> ( x .x. A ) ) : ZZ -1-1-> ( K ` { A } ) /\ ( x e. ZZ |-> ( x .x. A ) ) : ZZ -onto-> ( K ` { A } ) ) ) | 
						
							| 51 | 42 49 50 | sylanbrc |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( x e. ZZ |-> ( x .x. A ) ) : ZZ -1-1-onto-> ( K ` { A } ) ) |