| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odval.1 |  |-  X = ( Base ` G ) | 
						
							| 2 |  | odval.2 |  |-  .x. = ( .g ` G ) | 
						
							| 3 |  | odval.3 |  |-  .0. = ( 0g ` G ) | 
						
							| 4 |  | odval.4 |  |-  O = ( od ` G ) | 
						
							| 5 |  | fveq2 |  |-  ( g = G -> ( Base ` g ) = ( Base ` G ) ) | 
						
							| 6 | 5 1 | eqtr4di |  |-  ( g = G -> ( Base ` g ) = X ) | 
						
							| 7 |  | fveq2 |  |-  ( g = G -> ( .g ` g ) = ( .g ` G ) ) | 
						
							| 8 | 7 2 | eqtr4di |  |-  ( g = G -> ( .g ` g ) = .x. ) | 
						
							| 9 | 8 | oveqd |  |-  ( g = G -> ( y ( .g ` g ) x ) = ( y .x. x ) ) | 
						
							| 10 |  | fveq2 |  |-  ( g = G -> ( 0g ` g ) = ( 0g ` G ) ) | 
						
							| 11 | 10 3 | eqtr4di |  |-  ( g = G -> ( 0g ` g ) = .0. ) | 
						
							| 12 | 9 11 | eqeq12d |  |-  ( g = G -> ( ( y ( .g ` g ) x ) = ( 0g ` g ) <-> ( y .x. x ) = .0. ) ) | 
						
							| 13 | 12 | rabbidv |  |-  ( g = G -> { y e. NN | ( y ( .g ` g ) x ) = ( 0g ` g ) } = { y e. NN | ( y .x. x ) = .0. } ) | 
						
							| 14 | 13 | csbeq1d |  |-  ( g = G -> [_ { y e. NN | ( y ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) = [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) | 
						
							| 15 | 6 14 | mpteq12dv |  |-  ( g = G -> ( x e. ( Base ` g ) |-> [_ { y e. NN | ( y ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) | 
						
							| 16 |  | df-od |  |-  od = ( g e. _V |-> ( x e. ( Base ` g ) |-> [_ { y e. NN | ( y ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) | 
						
							| 17 | 1 | fvexi |  |-  X e. _V | 
						
							| 18 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 19 |  | nnex |  |-  NN e. _V | 
						
							| 20 | 19 | rabex |  |-  { y e. NN | ( y .x. x ) = .0. } e. _V | 
						
							| 21 |  | eqeq1 |  |-  ( i = { y e. NN | ( y .x. x ) = .0. } -> ( i = (/) <-> { y e. NN | ( y .x. x ) = .0. } = (/) ) ) | 
						
							| 22 |  | infeq1 |  |-  ( i = { y e. NN | ( y .x. x ) = .0. } -> inf ( i , RR , < ) = inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) ) | 
						
							| 23 | 21 22 | ifbieq2d |  |-  ( i = { y e. NN | ( y .x. x ) = .0. } -> if ( i = (/) , 0 , inf ( i , RR , < ) ) = if ( { y e. NN | ( y .x. x ) = .0. } = (/) , 0 , inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) ) ) | 
						
							| 24 | 20 23 | csbie |  |-  [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) = if ( { y e. NN | ( y .x. x ) = .0. } = (/) , 0 , inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) ) | 
						
							| 25 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 26 | 25 | a1i |  |-  ( ( T. /\ { y e. NN | ( y .x. x ) = .0. } = (/) ) -> 0 e. NN0 ) | 
						
							| 27 |  | df-ne |  |-  ( { y e. NN | ( y .x. x ) = .0. } =/= (/) <-> -. { y e. NN | ( y .x. x ) = .0. } = (/) ) | 
						
							| 28 |  | ssrab2 |  |-  { y e. NN | ( y .x. x ) = .0. } C_ NN | 
						
							| 29 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 30 | 28 29 | sseqtri |  |-  { y e. NN | ( y .x. x ) = .0. } C_ ( ZZ>= ` 1 ) | 
						
							| 31 |  | infssuzcl |  |-  ( ( { y e. NN | ( y .x. x ) = .0. } C_ ( ZZ>= ` 1 ) /\ { y e. NN | ( y .x. x ) = .0. } =/= (/) ) -> inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) e. { y e. NN | ( y .x. x ) = .0. } ) | 
						
							| 32 | 30 31 | mpan |  |-  ( { y e. NN | ( y .x. x ) = .0. } =/= (/) -> inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) e. { y e. NN | ( y .x. x ) = .0. } ) | 
						
							| 33 | 28 32 | sselid |  |-  ( { y e. NN | ( y .x. x ) = .0. } =/= (/) -> inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) e. NN ) | 
						
							| 34 | 27 33 | sylbir |  |-  ( -. { y e. NN | ( y .x. x ) = .0. } = (/) -> inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) e. NN ) | 
						
							| 35 | 34 | nnnn0d |  |-  ( -. { y e. NN | ( y .x. x ) = .0. } = (/) -> inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) e. NN0 ) | 
						
							| 36 | 35 | adantl |  |-  ( ( T. /\ -. { y e. NN | ( y .x. x ) = .0. } = (/) ) -> inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) e. NN0 ) | 
						
							| 37 | 26 36 | ifclda |  |-  ( T. -> if ( { y e. NN | ( y .x. x ) = .0. } = (/) , 0 , inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) ) e. NN0 ) | 
						
							| 38 | 37 | mptru |  |-  if ( { y e. NN | ( y .x. x ) = .0. } = (/) , 0 , inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) ) e. NN0 | 
						
							| 39 | 24 38 | eqeltri |  |-  [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) e. NN0 | 
						
							| 40 | 39 | rgenw |  |-  A. x e. X [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) e. NN0 | 
						
							| 41 | 17 18 40 | mptexw |  |-  ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) e. _V | 
						
							| 42 | 15 16 41 | fvmpt |  |-  ( G e. _V -> ( od ` G ) = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) | 
						
							| 43 |  | fvprc |  |-  ( -. G e. _V -> ( od ` G ) = (/) ) | 
						
							| 44 |  | fvprc |  |-  ( -. G e. _V -> ( Base ` G ) = (/) ) | 
						
							| 45 | 1 44 | eqtrid |  |-  ( -. G e. _V -> X = (/) ) | 
						
							| 46 | 45 | mpteq1d |  |-  ( -. G e. _V -> ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) = ( x e. (/) |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) | 
						
							| 47 |  | mpt0 |  |-  ( x e. (/) |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) = (/) | 
						
							| 48 | 46 47 | eqtrdi |  |-  ( -. G e. _V -> ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) = (/) ) | 
						
							| 49 | 43 48 | eqtr4d |  |-  ( -. G e. _V -> ( od ` G ) = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) | 
						
							| 50 | 42 49 | pm2.61i |  |-  ( od ` G ) = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) | 
						
							| 51 | 4 50 | eqtri |  |-  O = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) |