| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odval.1 |
|- X = ( Base ` G ) |
| 2 |
|
odval.2 |
|- .x. = ( .g ` G ) |
| 3 |
|
odval.3 |
|- .0. = ( 0g ` G ) |
| 4 |
|
odval.4 |
|- O = ( od ` G ) |
| 5 |
|
fveq2 |
|- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
| 6 |
5 1
|
eqtr4di |
|- ( g = G -> ( Base ` g ) = X ) |
| 7 |
|
fveq2 |
|- ( g = G -> ( .g ` g ) = ( .g ` G ) ) |
| 8 |
7 2
|
eqtr4di |
|- ( g = G -> ( .g ` g ) = .x. ) |
| 9 |
8
|
oveqd |
|- ( g = G -> ( y ( .g ` g ) x ) = ( y .x. x ) ) |
| 10 |
|
fveq2 |
|- ( g = G -> ( 0g ` g ) = ( 0g ` G ) ) |
| 11 |
10 3
|
eqtr4di |
|- ( g = G -> ( 0g ` g ) = .0. ) |
| 12 |
9 11
|
eqeq12d |
|- ( g = G -> ( ( y ( .g ` g ) x ) = ( 0g ` g ) <-> ( y .x. x ) = .0. ) ) |
| 13 |
12
|
rabbidv |
|- ( g = G -> { y e. NN | ( y ( .g ` g ) x ) = ( 0g ` g ) } = { y e. NN | ( y .x. x ) = .0. } ) |
| 14 |
13
|
csbeq1d |
|- ( g = G -> [_ { y e. NN | ( y ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) = [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) |
| 15 |
6 14
|
mpteq12dv |
|- ( g = G -> ( x e. ( Base ` g ) |-> [_ { y e. NN | ( y ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) |
| 16 |
|
df-od |
|- od = ( g e. _V |-> ( x e. ( Base ` g ) |-> [_ { y e. NN | ( y ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) |
| 17 |
1
|
fvexi |
|- X e. _V |
| 18 |
|
nn0ex |
|- NN0 e. _V |
| 19 |
|
nnex |
|- NN e. _V |
| 20 |
19
|
rabex |
|- { y e. NN | ( y .x. x ) = .0. } e. _V |
| 21 |
|
eqeq1 |
|- ( i = { y e. NN | ( y .x. x ) = .0. } -> ( i = (/) <-> { y e. NN | ( y .x. x ) = .0. } = (/) ) ) |
| 22 |
|
infeq1 |
|- ( i = { y e. NN | ( y .x. x ) = .0. } -> inf ( i , RR , < ) = inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) ) |
| 23 |
21 22
|
ifbieq2d |
|- ( i = { y e. NN | ( y .x. x ) = .0. } -> if ( i = (/) , 0 , inf ( i , RR , < ) ) = if ( { y e. NN | ( y .x. x ) = .0. } = (/) , 0 , inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) ) ) |
| 24 |
20 23
|
csbie |
|- [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) = if ( { y e. NN | ( y .x. x ) = .0. } = (/) , 0 , inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) ) |
| 25 |
|
0nn0 |
|- 0 e. NN0 |
| 26 |
25
|
a1i |
|- ( ( T. /\ { y e. NN | ( y .x. x ) = .0. } = (/) ) -> 0 e. NN0 ) |
| 27 |
|
df-ne |
|- ( { y e. NN | ( y .x. x ) = .0. } =/= (/) <-> -. { y e. NN | ( y .x. x ) = .0. } = (/) ) |
| 28 |
|
ssrab2 |
|- { y e. NN | ( y .x. x ) = .0. } C_ NN |
| 29 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 30 |
28 29
|
sseqtri |
|- { y e. NN | ( y .x. x ) = .0. } C_ ( ZZ>= ` 1 ) |
| 31 |
|
infssuzcl |
|- ( ( { y e. NN | ( y .x. x ) = .0. } C_ ( ZZ>= ` 1 ) /\ { y e. NN | ( y .x. x ) = .0. } =/= (/) ) -> inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) e. { y e. NN | ( y .x. x ) = .0. } ) |
| 32 |
30 31
|
mpan |
|- ( { y e. NN | ( y .x. x ) = .0. } =/= (/) -> inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) e. { y e. NN | ( y .x. x ) = .0. } ) |
| 33 |
28 32
|
sselid |
|- ( { y e. NN | ( y .x. x ) = .0. } =/= (/) -> inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) e. NN ) |
| 34 |
27 33
|
sylbir |
|- ( -. { y e. NN | ( y .x. x ) = .0. } = (/) -> inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) e. NN ) |
| 35 |
34
|
nnnn0d |
|- ( -. { y e. NN | ( y .x. x ) = .0. } = (/) -> inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) e. NN0 ) |
| 36 |
35
|
adantl |
|- ( ( T. /\ -. { y e. NN | ( y .x. x ) = .0. } = (/) ) -> inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) e. NN0 ) |
| 37 |
26 36
|
ifclda |
|- ( T. -> if ( { y e. NN | ( y .x. x ) = .0. } = (/) , 0 , inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) ) e. NN0 ) |
| 38 |
37
|
mptru |
|- if ( { y e. NN | ( y .x. x ) = .0. } = (/) , 0 , inf ( { y e. NN | ( y .x. x ) = .0. } , RR , < ) ) e. NN0 |
| 39 |
24 38
|
eqeltri |
|- [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) e. NN0 |
| 40 |
39
|
rgenw |
|- A. x e. X [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) e. NN0 |
| 41 |
17 18 40
|
mptexw |
|- ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) e. _V |
| 42 |
15 16 41
|
fvmpt |
|- ( G e. _V -> ( od ` G ) = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) |
| 43 |
|
fvprc |
|- ( -. G e. _V -> ( od ` G ) = (/) ) |
| 44 |
|
fvprc |
|- ( -. G e. _V -> ( Base ` G ) = (/) ) |
| 45 |
1 44
|
eqtrid |
|- ( -. G e. _V -> X = (/) ) |
| 46 |
45
|
mpteq1d |
|- ( -. G e. _V -> ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) = ( x e. (/) |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) |
| 47 |
|
mpt0 |
|- ( x e. (/) |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) = (/) |
| 48 |
46 47
|
eqtrdi |
|- ( -. G e. _V -> ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) = (/) ) |
| 49 |
43 48
|
eqtr4d |
|- ( -. G e. _V -> ( od ` G ) = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) |
| 50 |
42 49
|
pm2.61i |
|- ( od ` G ) = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) |
| 51 |
4 50
|
eqtri |
|- O = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) |