| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odval.1 |
|- X = ( Base ` G ) |
| 2 |
|
odval.2 |
|- .x. = ( .g ` G ) |
| 3 |
|
odval.3 |
|- .0. = ( 0g ` G ) |
| 4 |
|
odval.4 |
|- O = ( od ` G ) |
| 5 |
|
fveq2 |
|- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
| 6 |
5 1
|
eqtr4di |
|- ( g = G -> ( Base ` g ) = X ) |
| 7 |
|
fveq2 |
|- ( g = G -> ( .g ` g ) = ( .g ` G ) ) |
| 8 |
7 2
|
eqtr4di |
|- ( g = G -> ( .g ` g ) = .x. ) |
| 9 |
8
|
oveqd |
|- ( g = G -> ( y ( .g ` g ) x ) = ( y .x. x ) ) |
| 10 |
|
fveq2 |
|- ( g = G -> ( 0g ` g ) = ( 0g ` G ) ) |
| 11 |
10 3
|
eqtr4di |
|- ( g = G -> ( 0g ` g ) = .0. ) |
| 12 |
9 11
|
eqeq12d |
|- ( g = G -> ( ( y ( .g ` g ) x ) = ( 0g ` g ) <-> ( y .x. x ) = .0. ) ) |
| 13 |
12
|
rabbidv |
|- ( g = G -> { y e. NN | ( y ( .g ` g ) x ) = ( 0g ` g ) } = { y e. NN | ( y .x. x ) = .0. } ) |
| 14 |
13
|
csbeq1d |
|- ( g = G -> [_ { y e. NN | ( y ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) = [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) |
| 15 |
6 14
|
mpteq12dv |
|- ( g = G -> ( x e. ( Base ` g ) |-> [_ { y e. NN | ( y ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) |
| 16 |
|
df-od |
|- od = ( g e. _V |-> ( x e. ( Base ` g ) |-> [_ { y e. NN | ( y ( .g ` g ) x ) = ( 0g ` g ) } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) |
| 17 |
15 16 1
|
mptfvmpt |
|- ( G e. _V -> ( od ` G ) = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) |
| 18 |
|
fvprc |
|- ( -. G e. _V -> ( od ` G ) = (/) ) |
| 19 |
|
fvprc |
|- ( -. G e. _V -> ( Base ` G ) = (/) ) |
| 20 |
1 19
|
eqtrid |
|- ( -. G e. _V -> X = (/) ) |
| 21 |
20
|
mpteq1d |
|- ( -. G e. _V -> ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) = ( x e. (/) |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) |
| 22 |
|
mpt0 |
|- ( x e. (/) |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) = (/) |
| 23 |
21 22
|
eqtrdi |
|- ( -. G e. _V -> ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) = (/) ) |
| 24 |
18 23
|
eqtr4d |
|- ( -. G e. _V -> ( od ` G ) = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) ) |
| 25 |
17 24
|
pm2.61i |
|- ( od ` G ) = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) |
| 26 |
4 25
|
eqtri |
|- O = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) |