| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odhash.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | odhash.o |  |-  O = ( od ` G ) | 
						
							| 3 |  | odhash.k |  |-  K = ( mrCls ` ( SubGrp ` G ) ) | 
						
							| 4 |  | eqid |  |-  ( .g ` G ) = ( .g ` G ) | 
						
							| 5 | 1 4 2 3 | odf1o2 |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) e. NN ) -> ( x e. ( 0 ..^ ( O ` A ) ) |-> ( x ( .g ` G ) A ) ) : ( 0 ..^ ( O ` A ) ) -1-1-onto-> ( K ` { A } ) ) | 
						
							| 6 |  | ovex |  |-  ( 0 ..^ ( O ` A ) ) e. _V | 
						
							| 7 | 6 | f1oen |  |-  ( ( x e. ( 0 ..^ ( O ` A ) ) |-> ( x ( .g ` G ) A ) ) : ( 0 ..^ ( O ` A ) ) -1-1-onto-> ( K ` { A } ) -> ( 0 ..^ ( O ` A ) ) ~~ ( K ` { A } ) ) | 
						
							| 8 |  | hasheni |  |-  ( ( 0 ..^ ( O ` A ) ) ~~ ( K ` { A } ) -> ( # ` ( 0 ..^ ( O ` A ) ) ) = ( # ` ( K ` { A } ) ) ) | 
						
							| 9 | 5 7 8 | 3syl |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) e. NN ) -> ( # ` ( 0 ..^ ( O ` A ) ) ) = ( # ` ( K ` { A } ) ) ) | 
						
							| 10 | 1 2 | odcl |  |-  ( A e. X -> ( O ` A ) e. NN0 ) | 
						
							| 11 | 10 | 3ad2ant2 |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) e. NN ) -> ( O ` A ) e. NN0 ) | 
						
							| 12 |  | hashfzo0 |  |-  ( ( O ` A ) e. NN0 -> ( # ` ( 0 ..^ ( O ` A ) ) ) = ( O ` A ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) e. NN ) -> ( # ` ( 0 ..^ ( O ` A ) ) ) = ( O ` A ) ) | 
						
							| 14 | 9 13 | eqtr3d |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) e. NN ) -> ( # ` ( K ` { A } ) ) = ( O ` A ) ) |