Step |
Hyp |
Ref |
Expression |
1 |
|
odhash.x |
|- X = ( Base ` G ) |
2 |
|
odhash.o |
|- O = ( od ` G ) |
3 |
|
odhash.k |
|- K = ( mrCls ` ( SubGrp ` G ) ) |
4 |
1 2
|
odcl |
|- ( A e. X -> ( O ` A ) e. NN0 ) |
5 |
4
|
3ad2ant2 |
|- ( ( G e. Grp /\ A e. X /\ ( K ` { A } ) e. Fin ) -> ( O ` A ) e. NN0 ) |
6 |
|
hashcl |
|- ( ( K ` { A } ) e. Fin -> ( # ` ( K ` { A } ) ) e. NN0 ) |
7 |
6
|
nn0red |
|- ( ( K ` { A } ) e. Fin -> ( # ` ( K ` { A } ) ) e. RR ) |
8 |
|
pnfnre |
|- +oo e/ RR |
9 |
8
|
neli |
|- -. +oo e. RR |
10 |
1 2 3
|
odhash |
|- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( # ` ( K ` { A } ) ) = +oo ) |
11 |
10
|
eleq1d |
|- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( ( # ` ( K ` { A } ) ) e. RR <-> +oo e. RR ) ) |
12 |
9 11
|
mtbiri |
|- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> -. ( # ` ( K ` { A } ) ) e. RR ) |
13 |
12
|
3expia |
|- ( ( G e. Grp /\ A e. X ) -> ( ( O ` A ) = 0 -> -. ( # ` ( K ` { A } ) ) e. RR ) ) |
14 |
13
|
necon2ad |
|- ( ( G e. Grp /\ A e. X ) -> ( ( # ` ( K ` { A } ) ) e. RR -> ( O ` A ) =/= 0 ) ) |
15 |
7 14
|
syl5 |
|- ( ( G e. Grp /\ A e. X ) -> ( ( K ` { A } ) e. Fin -> ( O ` A ) =/= 0 ) ) |
16 |
15
|
3impia |
|- ( ( G e. Grp /\ A e. X /\ ( K ` { A } ) e. Fin ) -> ( O ` A ) =/= 0 ) |
17 |
|
elnnne0 |
|- ( ( O ` A ) e. NN <-> ( ( O ` A ) e. NN0 /\ ( O ` A ) =/= 0 ) ) |
18 |
5 16 17
|
sylanbrc |
|- ( ( G e. Grp /\ A e. X /\ ( K ` { A } ) e. Fin ) -> ( O ` A ) e. NN ) |
19 |
1 2 3
|
odhash2 |
|- ( ( G e. Grp /\ A e. X /\ ( O ` A ) e. NN ) -> ( # ` ( K ` { A } ) ) = ( O ` A ) ) |
20 |
18 19
|
syld3an3 |
|- ( ( G e. Grp /\ A e. X /\ ( K ` { A } ) e. Fin ) -> ( # ` ( K ` { A } ) ) = ( O ` A ) ) |
21 |
20
|
eqcomd |
|- ( ( G e. Grp /\ A e. X /\ ( K ` { A } ) e. Fin ) -> ( O ` A ) = ( # ` ( K ` { A } ) ) ) |