| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odhash.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | odhash.o |  |-  O = ( od ` G ) | 
						
							| 3 |  | odhash.k |  |-  K = ( mrCls ` ( SubGrp ` G ) ) | 
						
							| 4 | 1 2 | odcl |  |-  ( A e. X -> ( O ` A ) e. NN0 ) | 
						
							| 5 | 4 | 3ad2ant2 |  |-  ( ( G e. Grp /\ A e. X /\ ( K ` { A } ) e. Fin ) -> ( O ` A ) e. NN0 ) | 
						
							| 6 |  | hashcl |  |-  ( ( K ` { A } ) e. Fin -> ( # ` ( K ` { A } ) ) e. NN0 ) | 
						
							| 7 | 6 | nn0red |  |-  ( ( K ` { A } ) e. Fin -> ( # ` ( K ` { A } ) ) e. RR ) | 
						
							| 8 |  | pnfnre |  |-  +oo e/ RR | 
						
							| 9 | 8 | neli |  |-  -. +oo e. RR | 
						
							| 10 | 1 2 3 | odhash |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( # ` ( K ` { A } ) ) = +oo ) | 
						
							| 11 | 10 | eleq1d |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( ( # ` ( K ` { A } ) ) e. RR <-> +oo e. RR ) ) | 
						
							| 12 | 9 11 | mtbiri |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> -. ( # ` ( K ` { A } ) ) e. RR ) | 
						
							| 13 | 12 | 3expia |  |-  ( ( G e. Grp /\ A e. X ) -> ( ( O ` A ) = 0 -> -. ( # ` ( K ` { A } ) ) e. RR ) ) | 
						
							| 14 | 13 | necon2ad |  |-  ( ( G e. Grp /\ A e. X ) -> ( ( # ` ( K ` { A } ) ) e. RR -> ( O ` A ) =/= 0 ) ) | 
						
							| 15 | 7 14 | syl5 |  |-  ( ( G e. Grp /\ A e. X ) -> ( ( K ` { A } ) e. Fin -> ( O ` A ) =/= 0 ) ) | 
						
							| 16 | 15 | 3impia |  |-  ( ( G e. Grp /\ A e. X /\ ( K ` { A } ) e. Fin ) -> ( O ` A ) =/= 0 ) | 
						
							| 17 |  | elnnne0 |  |-  ( ( O ` A ) e. NN <-> ( ( O ` A ) e. NN0 /\ ( O ` A ) =/= 0 ) ) | 
						
							| 18 | 5 16 17 | sylanbrc |  |-  ( ( G e. Grp /\ A e. X /\ ( K ` { A } ) e. Fin ) -> ( O ` A ) e. NN ) | 
						
							| 19 | 1 2 3 | odhash2 |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) e. NN ) -> ( # ` ( K ` { A } ) ) = ( O ` A ) ) | 
						
							| 20 | 18 19 | syld3an3 |  |-  ( ( G e. Grp /\ A e. X /\ ( K ` { A } ) e. Fin ) -> ( # ` ( K ` { A } ) ) = ( O ` A ) ) | 
						
							| 21 | 20 | eqcomd |  |-  ( ( G e. Grp /\ A e. X /\ ( K ` { A } ) e. Fin ) -> ( O ` A ) = ( # ` ( K ` { A } ) ) ) |