Step |
Hyp |
Ref |
Expression |
1 |
|
odcl.1 |
|- X = ( Base ` G ) |
2 |
|
odcl.2 |
|- O = ( od ` G ) |
3 |
|
odid.3 |
|- .x. = ( .g ` G ) |
4 |
|
odid.4 |
|- .0. = ( 0g ` G ) |
5 |
|
oveq1 |
|- ( ( O ` A ) = 0 -> ( ( O ` A ) .x. A ) = ( 0 .x. A ) ) |
6 |
1 4 3
|
mulg0 |
|- ( A e. X -> ( 0 .x. A ) = .0. ) |
7 |
5 6
|
sylan9eqr |
|- ( ( A e. X /\ ( O ` A ) = 0 ) -> ( ( O ` A ) .x. A ) = .0. ) |
8 |
7
|
adantrr |
|- ( ( A e. X /\ ( ( O ` A ) = 0 /\ { y e. NN | ( y .x. A ) = .0. } = (/) ) ) -> ( ( O ` A ) .x. A ) = .0. ) |
9 |
|
oveq1 |
|- ( y = ( O ` A ) -> ( y .x. A ) = ( ( O ` A ) .x. A ) ) |
10 |
9
|
eqeq1d |
|- ( y = ( O ` A ) -> ( ( y .x. A ) = .0. <-> ( ( O ` A ) .x. A ) = .0. ) ) |
11 |
10
|
elrab |
|- ( ( O ` A ) e. { y e. NN | ( y .x. A ) = .0. } <-> ( ( O ` A ) e. NN /\ ( ( O ` A ) .x. A ) = .0. ) ) |
12 |
11
|
simprbi |
|- ( ( O ` A ) e. { y e. NN | ( y .x. A ) = .0. } -> ( ( O ` A ) .x. A ) = .0. ) |
13 |
12
|
adantl |
|- ( ( A e. X /\ ( O ` A ) e. { y e. NN | ( y .x. A ) = .0. } ) -> ( ( O ` A ) .x. A ) = .0. ) |
14 |
|
eqid |
|- { y e. NN | ( y .x. A ) = .0. } = { y e. NN | ( y .x. A ) = .0. } |
15 |
1 3 4 2 14
|
odlem1 |
|- ( A e. X -> ( ( ( O ` A ) = 0 /\ { y e. NN | ( y .x. A ) = .0. } = (/) ) \/ ( O ` A ) e. { y e. NN | ( y .x. A ) = .0. } ) ) |
16 |
8 13 15
|
mpjaodan |
|- ( A e. X -> ( ( O ` A ) .x. A ) = .0. ) |