| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odf1.1 |  |-  X = ( Base ` G ) | 
						
							| 2 |  | odf1.2 |  |-  O = ( od ` G ) | 
						
							| 3 |  | odf1.3 |  |-  .x. = ( .g ` G ) | 
						
							| 4 |  | odf1.4 |  |-  F = ( x e. ZZ |-> ( x .x. A ) ) | 
						
							| 5 |  | znnen |  |-  ZZ ~~ NN | 
						
							| 6 |  | nnenom |  |-  NN ~~ _om | 
						
							| 7 | 5 6 | entr2i |  |-  _om ~~ ZZ | 
						
							| 8 | 1 2 3 4 | odf1 |  |-  ( ( G e. Grp /\ A e. X ) -> ( ( O ` A ) = 0 <-> F : ZZ -1-1-> X ) ) | 
						
							| 9 | 8 | biimp3a |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> F : ZZ -1-1-> X ) | 
						
							| 10 |  | f1f |  |-  ( F : ZZ -1-1-> X -> F : ZZ --> X ) | 
						
							| 11 |  | zex |  |-  ZZ e. _V | 
						
							| 12 | 1 | fvexi |  |-  X e. _V | 
						
							| 13 |  | fex2 |  |-  ( ( F : ZZ --> X /\ ZZ e. _V /\ X e. _V ) -> F e. _V ) | 
						
							| 14 | 11 12 13 | mp3an23 |  |-  ( F : ZZ --> X -> F e. _V ) | 
						
							| 15 | 9 10 14 | 3syl |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> F e. _V ) | 
						
							| 16 |  | f1f1orn |  |-  ( F : ZZ -1-1-> X -> F : ZZ -1-1-onto-> ran F ) | 
						
							| 17 | 9 16 | syl |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> F : ZZ -1-1-onto-> ran F ) | 
						
							| 18 |  | f1oen3g |  |-  ( ( F e. _V /\ F : ZZ -1-1-onto-> ran F ) -> ZZ ~~ ran F ) | 
						
							| 19 | 15 17 18 | syl2anc |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ZZ ~~ ran F ) | 
						
							| 20 |  | entr |  |-  ( ( _om ~~ ZZ /\ ZZ ~~ ran F ) -> _om ~~ ran F ) | 
						
							| 21 | 7 19 20 | sylancr |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> _om ~~ ran F ) | 
						
							| 22 |  | endom |  |-  ( _om ~~ ran F -> _om ~<_ ran F ) | 
						
							| 23 |  | domnsym |  |-  ( _om ~<_ ran F -> -. ran F ~< _om ) | 
						
							| 24 | 21 22 23 | 3syl |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> -. ran F ~< _om ) | 
						
							| 25 |  | isfinite |  |-  ( ran F e. Fin <-> ran F ~< _om ) | 
						
							| 26 | 24 25 | sylnibr |  |-  ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> -. ran F e. Fin ) |