| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odinv.1 |  |-  O = ( od ` G ) | 
						
							| 2 |  | odinv.2 |  |-  I = ( invg ` G ) | 
						
							| 3 |  | odinv.3 |  |-  X = ( Base ` G ) | 
						
							| 4 |  | neg1z |  |-  -u 1 e. ZZ | 
						
							| 5 |  | eqid |  |-  ( .g ` G ) = ( .g ` G ) | 
						
							| 6 | 3 1 5 | odmulg |  |-  ( ( G e. Grp /\ A e. X /\ -u 1 e. ZZ ) -> ( O ` A ) = ( ( -u 1 gcd ( O ` A ) ) x. ( O ` ( -u 1 ( .g ` G ) A ) ) ) ) | 
						
							| 7 | 4 6 | mp3an3 |  |-  ( ( G e. Grp /\ A e. X ) -> ( O ` A ) = ( ( -u 1 gcd ( O ` A ) ) x. ( O ` ( -u 1 ( .g ` G ) A ) ) ) ) | 
						
							| 8 | 3 1 | odcl |  |-  ( A e. X -> ( O ` A ) e. NN0 ) | 
						
							| 9 | 8 | adantl |  |-  ( ( G e. Grp /\ A e. X ) -> ( O ` A ) e. NN0 ) | 
						
							| 10 | 9 | nn0zd |  |-  ( ( G e. Grp /\ A e. X ) -> ( O ` A ) e. ZZ ) | 
						
							| 11 |  | gcdcom |  |-  ( ( -u 1 e. ZZ /\ ( O ` A ) e. ZZ ) -> ( -u 1 gcd ( O ` A ) ) = ( ( O ` A ) gcd -u 1 ) ) | 
						
							| 12 | 4 10 11 | sylancr |  |-  ( ( G e. Grp /\ A e. X ) -> ( -u 1 gcd ( O ` A ) ) = ( ( O ` A ) gcd -u 1 ) ) | 
						
							| 13 |  | 1z |  |-  1 e. ZZ | 
						
							| 14 |  | gcdneg |  |-  ( ( ( O ` A ) e. ZZ /\ 1 e. ZZ ) -> ( ( O ` A ) gcd -u 1 ) = ( ( O ` A ) gcd 1 ) ) | 
						
							| 15 | 10 13 14 | sylancl |  |-  ( ( G e. Grp /\ A e. X ) -> ( ( O ` A ) gcd -u 1 ) = ( ( O ` A ) gcd 1 ) ) | 
						
							| 16 |  | gcd1 |  |-  ( ( O ` A ) e. ZZ -> ( ( O ` A ) gcd 1 ) = 1 ) | 
						
							| 17 | 10 16 | syl |  |-  ( ( G e. Grp /\ A e. X ) -> ( ( O ` A ) gcd 1 ) = 1 ) | 
						
							| 18 | 12 15 17 | 3eqtrd |  |-  ( ( G e. Grp /\ A e. X ) -> ( -u 1 gcd ( O ` A ) ) = 1 ) | 
						
							| 19 | 3 5 2 | mulgm1 |  |-  ( ( G e. Grp /\ A e. X ) -> ( -u 1 ( .g ` G ) A ) = ( I ` A ) ) | 
						
							| 20 | 19 | fveq2d |  |-  ( ( G e. Grp /\ A e. X ) -> ( O ` ( -u 1 ( .g ` G ) A ) ) = ( O ` ( I ` A ) ) ) | 
						
							| 21 | 18 20 | oveq12d |  |-  ( ( G e. Grp /\ A e. X ) -> ( ( -u 1 gcd ( O ` A ) ) x. ( O ` ( -u 1 ( .g ` G ) A ) ) ) = ( 1 x. ( O ` ( I ` A ) ) ) ) | 
						
							| 22 | 3 2 | grpinvcl |  |-  ( ( G e. Grp /\ A e. X ) -> ( I ` A ) e. X ) | 
						
							| 23 | 3 1 | odcl |  |-  ( ( I ` A ) e. X -> ( O ` ( I ` A ) ) e. NN0 ) | 
						
							| 24 | 22 23 | syl |  |-  ( ( G e. Grp /\ A e. X ) -> ( O ` ( I ` A ) ) e. NN0 ) | 
						
							| 25 | 24 | nn0cnd |  |-  ( ( G e. Grp /\ A e. X ) -> ( O ` ( I ` A ) ) e. CC ) | 
						
							| 26 | 25 | mullidd |  |-  ( ( G e. Grp /\ A e. X ) -> ( 1 x. ( O ` ( I ` A ) ) ) = ( O ` ( I ` A ) ) ) | 
						
							| 27 | 7 21 26 | 3eqtrrd |  |-  ( ( G e. Grp /\ A e. X ) -> ( O ` ( I ` A ) ) = ( O ` A ) ) |