Step |
Hyp |
Ref |
Expression |
1 |
|
odcl.1 |
|- X = ( Base ` G ) |
2 |
|
odcl.2 |
|- O = ( od ` G ) |
3 |
|
odid.3 |
|- .x. = ( .g ` G ) |
4 |
|
odid.4 |
|- .0. = ( 0g ` G ) |
5 |
|
oveq1 |
|- ( y = N -> ( y .x. A ) = ( N .x. A ) ) |
6 |
5
|
eqeq1d |
|- ( y = N -> ( ( y .x. A ) = .0. <-> ( N .x. A ) = .0. ) ) |
7 |
6
|
elrab |
|- ( N e. { y e. NN | ( y .x. A ) = .0. } <-> ( N e. NN /\ ( N .x. A ) = .0. ) ) |
8 |
|
eqid |
|- { y e. NN | ( y .x. A ) = .0. } = { y e. NN | ( y .x. A ) = .0. } |
9 |
1 3 4 2 8
|
odval |
|- ( A e. X -> ( O ` A ) = if ( { y e. NN | ( y .x. A ) = .0. } = (/) , 0 , inf ( { y e. NN | ( y .x. A ) = .0. } , RR , < ) ) ) |
10 |
|
n0i |
|- ( N e. { y e. NN | ( y .x. A ) = .0. } -> -. { y e. NN | ( y .x. A ) = .0. } = (/) ) |
11 |
10
|
iffalsed |
|- ( N e. { y e. NN | ( y .x. A ) = .0. } -> if ( { y e. NN | ( y .x. A ) = .0. } = (/) , 0 , inf ( { y e. NN | ( y .x. A ) = .0. } , RR , < ) ) = inf ( { y e. NN | ( y .x. A ) = .0. } , RR , < ) ) |
12 |
9 11
|
sylan9eq |
|- ( ( A e. X /\ N e. { y e. NN | ( y .x. A ) = .0. } ) -> ( O ` A ) = inf ( { y e. NN | ( y .x. A ) = .0. } , RR , < ) ) |
13 |
|
ssrab2 |
|- { y e. NN | ( y .x. A ) = .0. } C_ NN |
14 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
15 |
13 14
|
sseqtri |
|- { y e. NN | ( y .x. A ) = .0. } C_ ( ZZ>= ` 1 ) |
16 |
|
ne0i |
|- ( N e. { y e. NN | ( y .x. A ) = .0. } -> { y e. NN | ( y .x. A ) = .0. } =/= (/) ) |
17 |
16
|
adantl |
|- ( ( A e. X /\ N e. { y e. NN | ( y .x. A ) = .0. } ) -> { y e. NN | ( y .x. A ) = .0. } =/= (/) ) |
18 |
|
infssuzcl |
|- ( ( { y e. NN | ( y .x. A ) = .0. } C_ ( ZZ>= ` 1 ) /\ { y e. NN | ( y .x. A ) = .0. } =/= (/) ) -> inf ( { y e. NN | ( y .x. A ) = .0. } , RR , < ) e. { y e. NN | ( y .x. A ) = .0. } ) |
19 |
15 17 18
|
sylancr |
|- ( ( A e. X /\ N e. { y e. NN | ( y .x. A ) = .0. } ) -> inf ( { y e. NN | ( y .x. A ) = .0. } , RR , < ) e. { y e. NN | ( y .x. A ) = .0. } ) |
20 |
13 19
|
sselid |
|- ( ( A e. X /\ N e. { y e. NN | ( y .x. A ) = .0. } ) -> inf ( { y e. NN | ( y .x. A ) = .0. } , RR , < ) e. NN ) |
21 |
|
infssuzle |
|- ( ( { y e. NN | ( y .x. A ) = .0. } C_ ( ZZ>= ` 1 ) /\ N e. { y e. NN | ( y .x. A ) = .0. } ) -> inf ( { y e. NN | ( y .x. A ) = .0. } , RR , < ) <_ N ) |
22 |
15 21
|
mpan |
|- ( N e. { y e. NN | ( y .x. A ) = .0. } -> inf ( { y e. NN | ( y .x. A ) = .0. } , RR , < ) <_ N ) |
23 |
22
|
adantl |
|- ( ( A e. X /\ N e. { y e. NN | ( y .x. A ) = .0. } ) -> inf ( { y e. NN | ( y .x. A ) = .0. } , RR , < ) <_ N ) |
24 |
|
elrabi |
|- ( N e. { y e. NN | ( y .x. A ) = .0. } -> N e. NN ) |
25 |
24
|
nnzd |
|- ( N e. { y e. NN | ( y .x. A ) = .0. } -> N e. ZZ ) |
26 |
|
fznn |
|- ( N e. ZZ -> ( inf ( { y e. NN | ( y .x. A ) = .0. } , RR , < ) e. ( 1 ... N ) <-> ( inf ( { y e. NN | ( y .x. A ) = .0. } , RR , < ) e. NN /\ inf ( { y e. NN | ( y .x. A ) = .0. } , RR , < ) <_ N ) ) ) |
27 |
25 26
|
syl |
|- ( N e. { y e. NN | ( y .x. A ) = .0. } -> ( inf ( { y e. NN | ( y .x. A ) = .0. } , RR , < ) e. ( 1 ... N ) <-> ( inf ( { y e. NN | ( y .x. A ) = .0. } , RR , < ) e. NN /\ inf ( { y e. NN | ( y .x. A ) = .0. } , RR , < ) <_ N ) ) ) |
28 |
27
|
adantl |
|- ( ( A e. X /\ N e. { y e. NN | ( y .x. A ) = .0. } ) -> ( inf ( { y e. NN | ( y .x. A ) = .0. } , RR , < ) e. ( 1 ... N ) <-> ( inf ( { y e. NN | ( y .x. A ) = .0. } , RR , < ) e. NN /\ inf ( { y e. NN | ( y .x. A ) = .0. } , RR , < ) <_ N ) ) ) |
29 |
20 23 28
|
mpbir2and |
|- ( ( A e. X /\ N e. { y e. NN | ( y .x. A ) = .0. } ) -> inf ( { y e. NN | ( y .x. A ) = .0. } , RR , < ) e. ( 1 ... N ) ) |
30 |
12 29
|
eqeltrd |
|- ( ( A e. X /\ N e. { y e. NN | ( y .x. A ) = .0. } ) -> ( O ` A ) e. ( 1 ... N ) ) |
31 |
7 30
|
sylan2br |
|- ( ( A e. X /\ ( N e. NN /\ ( N .x. A ) = .0. ) ) -> ( O ` A ) e. ( 1 ... N ) ) |
32 |
31
|
3impb |
|- ( ( A e. X /\ N e. NN /\ ( N .x. A ) = .0. ) -> ( O ` A ) e. ( 1 ... N ) ) |