| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odm1inv.x |  |-  X = ( Base ` G ) | 
						
							| 2 |  | odm1inv.o |  |-  O = ( od ` G ) | 
						
							| 3 |  | odm1inv.t |  |-  .x. = ( .g ` G ) | 
						
							| 4 |  | odm1inv.i |  |-  I = ( invg ` G ) | 
						
							| 5 |  | odm1inv.g |  |-  ( ph -> G e. Grp ) | 
						
							| 6 |  | odm1inv.1 |  |-  ( ph -> A e. X ) | 
						
							| 7 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 8 | 1 2 3 7 | odid |  |-  ( A e. X -> ( ( O ` A ) .x. A ) = ( 0g ` G ) ) | 
						
							| 9 | 6 8 | syl |  |-  ( ph -> ( ( O ` A ) .x. A ) = ( 0g ` G ) ) | 
						
							| 10 | 1 3 | mulg1 |  |-  ( A e. X -> ( 1 .x. A ) = A ) | 
						
							| 11 | 6 10 | syl |  |-  ( ph -> ( 1 .x. A ) = A ) | 
						
							| 12 | 9 11 | oveq12d |  |-  ( ph -> ( ( ( O ` A ) .x. A ) ( -g ` G ) ( 1 .x. A ) ) = ( ( 0g ` G ) ( -g ` G ) A ) ) | 
						
							| 13 | 1 2 6 | odcld |  |-  ( ph -> ( O ` A ) e. NN0 ) | 
						
							| 14 | 13 | nn0zd |  |-  ( ph -> ( O ` A ) e. ZZ ) | 
						
							| 15 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 16 |  | eqid |  |-  ( -g ` G ) = ( -g ` G ) | 
						
							| 17 | 1 3 16 | mulgsubdir |  |-  ( ( G e. Grp /\ ( ( O ` A ) e. ZZ /\ 1 e. ZZ /\ A e. X ) ) -> ( ( ( O ` A ) - 1 ) .x. A ) = ( ( ( O ` A ) .x. A ) ( -g ` G ) ( 1 .x. A ) ) ) | 
						
							| 18 | 5 14 15 6 17 | syl13anc |  |-  ( ph -> ( ( ( O ` A ) - 1 ) .x. A ) = ( ( ( O ` A ) .x. A ) ( -g ` G ) ( 1 .x. A ) ) ) | 
						
							| 19 | 1 16 4 7 | grpinvval2 |  |-  ( ( G e. Grp /\ A e. X ) -> ( I ` A ) = ( ( 0g ` G ) ( -g ` G ) A ) ) | 
						
							| 20 | 5 6 19 | syl2anc |  |-  ( ph -> ( I ` A ) = ( ( 0g ` G ) ( -g ` G ) A ) ) | 
						
							| 21 | 12 18 20 | 3eqtr4d |  |-  ( ph -> ( ( ( O ` A ) - 1 ) .x. A ) = ( I ` A ) ) |