Step |
Hyp |
Ref |
Expression |
1 |
|
odm1inv.x |
|- X = ( Base ` G ) |
2 |
|
odm1inv.o |
|- O = ( od ` G ) |
3 |
|
odm1inv.t |
|- .x. = ( .g ` G ) |
4 |
|
odm1inv.i |
|- I = ( invg ` G ) |
5 |
|
odm1inv.g |
|- ( ph -> G e. Grp ) |
6 |
|
odm1inv.1 |
|- ( ph -> A e. X ) |
7 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
8 |
1 2 3 7
|
odid |
|- ( A e. X -> ( ( O ` A ) .x. A ) = ( 0g ` G ) ) |
9 |
6 8
|
syl |
|- ( ph -> ( ( O ` A ) .x. A ) = ( 0g ` G ) ) |
10 |
1 3
|
mulg1 |
|- ( A e. X -> ( 1 .x. A ) = A ) |
11 |
6 10
|
syl |
|- ( ph -> ( 1 .x. A ) = A ) |
12 |
9 11
|
oveq12d |
|- ( ph -> ( ( ( O ` A ) .x. A ) ( -g ` G ) ( 1 .x. A ) ) = ( ( 0g ` G ) ( -g ` G ) A ) ) |
13 |
1 2 6
|
odcld |
|- ( ph -> ( O ` A ) e. NN0 ) |
14 |
13
|
nn0zd |
|- ( ph -> ( O ` A ) e. ZZ ) |
15 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
16 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
17 |
1 3 16
|
mulgsubdir |
|- ( ( G e. Grp /\ ( ( O ` A ) e. ZZ /\ 1 e. ZZ /\ A e. X ) ) -> ( ( ( O ` A ) - 1 ) .x. A ) = ( ( ( O ` A ) .x. A ) ( -g ` G ) ( 1 .x. A ) ) ) |
18 |
5 14 15 6 17
|
syl13anc |
|- ( ph -> ( ( ( O ` A ) - 1 ) .x. A ) = ( ( ( O ` A ) .x. A ) ( -g ` G ) ( 1 .x. A ) ) ) |
19 |
1 16 4 7
|
grpinvval2 |
|- ( ( G e. Grp /\ A e. X ) -> ( I ` A ) = ( ( 0g ` G ) ( -g ` G ) A ) ) |
20 |
5 6 19
|
syl2anc |
|- ( ph -> ( I ` A ) = ( ( 0g ` G ) ( -g ` G ) A ) ) |
21 |
12 18 20
|
3eqtr4d |
|- ( ph -> ( ( ( O ` A ) - 1 ) .x. A ) = ( I ` A ) ) |