Step |
Hyp |
Ref |
Expression |
1 |
|
odcl.1 |
|- X = ( Base ` G ) |
2 |
|
odcl.2 |
|- O = ( od ` G ) |
3 |
|
odid.3 |
|- .x. = ( .g ` G ) |
4 |
|
odid.4 |
|- .0. = ( 0g ` G ) |
5 |
|
simpl3 |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> N e. ZZ ) |
6 |
5
|
zred |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> N e. RR ) |
7 |
|
simpr |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. NN ) |
8 |
7
|
nnrpd |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. RR+ ) |
9 |
|
modval |
|- ( ( N e. RR /\ ( O ` A ) e. RR+ ) -> ( N mod ( O ` A ) ) = ( N - ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) ) ) |
10 |
6 8 9
|
syl2anc |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( N mod ( O ` A ) ) = ( N - ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) ) ) |
11 |
10
|
oveq1d |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( N mod ( O ` A ) ) .x. A ) = ( ( N - ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) ) .x. A ) ) |
12 |
|
simpl1 |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> G e. Grp ) |
13 |
7
|
nnzd |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. ZZ ) |
14 |
6 7
|
nndivred |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( N / ( O ` A ) ) e. RR ) |
15 |
14
|
flcld |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( |_ ` ( N / ( O ` A ) ) ) e. ZZ ) |
16 |
13 15
|
zmulcld |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) e. ZZ ) |
17 |
|
simpl2 |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> A e. X ) |
18 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
19 |
1 3 18
|
mulgsubdir |
|- ( ( G e. Grp /\ ( N e. ZZ /\ ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) e. ZZ /\ A e. X ) ) -> ( ( N - ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) ) .x. A ) = ( ( N .x. A ) ( -g ` G ) ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) ) ) |
20 |
12 5 16 17 19
|
syl13anc |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( N - ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) ) .x. A ) = ( ( N .x. A ) ( -g ` G ) ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) ) ) |
21 |
|
nncn |
|- ( ( O ` A ) e. NN -> ( O ` A ) e. CC ) |
22 |
|
zcn |
|- ( ( |_ ` ( N / ( O ` A ) ) ) e. ZZ -> ( |_ ` ( N / ( O ` A ) ) ) e. CC ) |
23 |
|
mulcom |
|- ( ( ( O ` A ) e. CC /\ ( |_ ` ( N / ( O ` A ) ) ) e. CC ) -> ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) = ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) ) |
24 |
21 22 23
|
syl2an |
|- ( ( ( O ` A ) e. NN /\ ( |_ ` ( N / ( O ` A ) ) ) e. ZZ ) -> ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) = ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) ) |
25 |
7 15 24
|
syl2anc |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) = ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) ) |
26 |
25
|
oveq1d |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) = ( ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) .x. A ) ) |
27 |
1 3
|
mulgass |
|- ( ( G e. Grp /\ ( ( |_ ` ( N / ( O ` A ) ) ) e. ZZ /\ ( O ` A ) e. ZZ /\ A e. X ) ) -> ( ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) .x. A ) = ( ( |_ ` ( N / ( O ` A ) ) ) .x. ( ( O ` A ) .x. A ) ) ) |
28 |
12 15 13 17 27
|
syl13anc |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) .x. A ) = ( ( |_ ` ( N / ( O ` A ) ) ) .x. ( ( O ` A ) .x. A ) ) ) |
29 |
1 2 3 4
|
odid |
|- ( A e. X -> ( ( O ` A ) .x. A ) = .0. ) |
30 |
17 29
|
syl |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) .x. A ) = .0. ) |
31 |
30
|
oveq2d |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( |_ ` ( N / ( O ` A ) ) ) .x. ( ( O ` A ) .x. A ) ) = ( ( |_ ` ( N / ( O ` A ) ) ) .x. .0. ) ) |
32 |
1 3 4
|
mulgz |
|- ( ( G e. Grp /\ ( |_ ` ( N / ( O ` A ) ) ) e. ZZ ) -> ( ( |_ ` ( N / ( O ` A ) ) ) .x. .0. ) = .0. ) |
33 |
12 15 32
|
syl2anc |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( |_ ` ( N / ( O ` A ) ) ) .x. .0. ) = .0. ) |
34 |
31 33
|
eqtrd |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( |_ ` ( N / ( O ` A ) ) ) .x. ( ( O ` A ) .x. A ) ) = .0. ) |
35 |
26 28 34
|
3eqtrd |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) = .0. ) |
36 |
35
|
oveq2d |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( N .x. A ) ( -g ` G ) ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) ) = ( ( N .x. A ) ( -g ` G ) .0. ) ) |
37 |
1 3
|
mulgcl |
|- ( ( G e. Grp /\ N e. ZZ /\ A e. X ) -> ( N .x. A ) e. X ) |
38 |
12 5 17 37
|
syl3anc |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( N .x. A ) e. X ) |
39 |
1 4 18
|
grpsubid1 |
|- ( ( G e. Grp /\ ( N .x. A ) e. X ) -> ( ( N .x. A ) ( -g ` G ) .0. ) = ( N .x. A ) ) |
40 |
12 38 39
|
syl2anc |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( N .x. A ) ( -g ` G ) .0. ) = ( N .x. A ) ) |
41 |
36 40
|
eqtrd |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( N .x. A ) ( -g ` G ) ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) ) = ( N .x. A ) ) |
42 |
11 20 41
|
3eqtrd |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. NN ) -> ( ( N mod ( O ` A ) ) .x. A ) = ( N .x. A ) ) |