| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odcl.1 |  |-  X = ( Base ` G ) | 
						
							| 2 |  | odcl.2 |  |-  O = ( od ` G ) | 
						
							| 3 |  | odid.3 |  |-  .x. = ( .g ` G ) | 
						
							| 4 |  | odid.4 |  |-  .0. = ( 0g ` G ) | 
						
							| 5 |  | simpl1 |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> G e. Mnd ) | 
						
							| 6 |  | nnnn0 |  |-  ( ( O ` A ) e. NN -> ( O ` A ) e. NN0 ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. NN0 ) | 
						
							| 8 |  | simpl3 |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> N e. NN0 ) | 
						
							| 9 | 8 | nn0red |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> N e. RR ) | 
						
							| 10 |  | nnrp |  |-  ( ( O ` A ) e. NN -> ( O ` A ) e. RR+ ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. RR+ ) | 
						
							| 12 | 9 11 | rerpdivcld |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( N / ( O ` A ) ) e. RR ) | 
						
							| 13 | 8 | nn0ge0d |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> 0 <_ N ) | 
						
							| 14 |  | nnre |  |-  ( ( O ` A ) e. NN -> ( O ` A ) e. RR ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. RR ) | 
						
							| 16 |  | nngt0 |  |-  ( ( O ` A ) e. NN -> 0 < ( O ` A ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> 0 < ( O ` A ) ) | 
						
							| 18 |  | divge0 |  |-  ( ( ( N e. RR /\ 0 <_ N ) /\ ( ( O ` A ) e. RR /\ 0 < ( O ` A ) ) ) -> 0 <_ ( N / ( O ` A ) ) ) | 
						
							| 19 | 9 13 15 17 18 | syl22anc |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> 0 <_ ( N / ( O ` A ) ) ) | 
						
							| 20 |  | flge0nn0 |  |-  ( ( ( N / ( O ` A ) ) e. RR /\ 0 <_ ( N / ( O ` A ) ) ) -> ( |_ ` ( N / ( O ` A ) ) ) e. NN0 ) | 
						
							| 21 | 12 19 20 | syl2anc |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( |_ ` ( N / ( O ` A ) ) ) e. NN0 ) | 
						
							| 22 | 7 21 | nn0mulcld |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) e. NN0 ) | 
						
							| 23 | 8 | nn0zd |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> N e. ZZ ) | 
						
							| 24 |  | zmodcl |  |-  ( ( N e. ZZ /\ ( O ` A ) e. NN ) -> ( N mod ( O ` A ) ) e. NN0 ) | 
						
							| 25 | 23 24 | sylancom |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( N mod ( O ` A ) ) e. NN0 ) | 
						
							| 26 |  | simpl2 |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> A e. X ) | 
						
							| 27 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 28 | 1 3 27 | mulgnn0dir |  |-  ( ( G e. Mnd /\ ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) e. NN0 /\ ( N mod ( O ` A ) ) e. NN0 /\ A e. X ) ) -> ( ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) + ( N mod ( O ` A ) ) ) .x. A ) = ( ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) ( +g ` G ) ( ( N mod ( O ` A ) ) .x. A ) ) ) | 
						
							| 29 | 5 22 25 26 28 | syl13anc |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) + ( N mod ( O ` A ) ) ) .x. A ) = ( ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) ( +g ` G ) ( ( N mod ( O ` A ) ) .x. A ) ) ) | 
						
							| 30 | 15 | recnd |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. CC ) | 
						
							| 31 | 21 | nn0cnd |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( |_ ` ( N / ( O ` A ) ) ) e. CC ) | 
						
							| 32 | 30 31 | mulcomd |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) = ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) ) | 
						
							| 33 | 32 | oveq1d |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) = ( ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) .x. A ) ) | 
						
							| 34 | 1 3 | mulgnn0ass |  |-  ( ( G e. Mnd /\ ( ( |_ ` ( N / ( O ` A ) ) ) e. NN0 /\ ( O ` A ) e. NN0 /\ A e. X ) ) -> ( ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) .x. A ) = ( ( |_ ` ( N / ( O ` A ) ) ) .x. ( ( O ` A ) .x. A ) ) ) | 
						
							| 35 | 5 21 7 26 34 | syl13anc |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) .x. A ) = ( ( |_ ` ( N / ( O ` A ) ) ) .x. ( ( O ` A ) .x. A ) ) ) | 
						
							| 36 | 1 2 3 4 | odid |  |-  ( A e. X -> ( ( O ` A ) .x. A ) = .0. ) | 
						
							| 37 | 26 36 | syl |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) .x. A ) = .0. ) | 
						
							| 38 | 37 | oveq2d |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( |_ ` ( N / ( O ` A ) ) ) .x. ( ( O ` A ) .x. A ) ) = ( ( |_ ` ( N / ( O ` A ) ) ) .x. .0. ) ) | 
						
							| 39 | 1 3 4 | mulgnn0z |  |-  ( ( G e. Mnd /\ ( |_ ` ( N / ( O ` A ) ) ) e. NN0 ) -> ( ( |_ ` ( N / ( O ` A ) ) ) .x. .0. ) = .0. ) | 
						
							| 40 | 5 21 39 | syl2anc |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( |_ ` ( N / ( O ` A ) ) ) .x. .0. ) = .0. ) | 
						
							| 41 | 38 40 | eqtrd |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( |_ ` ( N / ( O ` A ) ) ) .x. ( ( O ` A ) .x. A ) ) = .0. ) | 
						
							| 42 | 35 41 | eqtrd |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( |_ ` ( N / ( O ` A ) ) ) x. ( O ` A ) ) .x. A ) = .0. ) | 
						
							| 43 | 33 42 | eqtrd |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) = .0. ) | 
						
							| 44 | 43 | oveq1d |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) .x. A ) ( +g ` G ) ( ( N mod ( O ` A ) ) .x. A ) ) = ( .0. ( +g ` G ) ( ( N mod ( O ` A ) ) .x. A ) ) ) | 
						
							| 45 | 29 44 | eqtrd |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) + ( N mod ( O ` A ) ) ) .x. A ) = ( .0. ( +g ` G ) ( ( N mod ( O ` A ) ) .x. A ) ) ) | 
						
							| 46 |  | modval |  |-  ( ( N e. RR /\ ( O ` A ) e. RR+ ) -> ( N mod ( O ` A ) ) = ( N - ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) ) ) | 
						
							| 47 | 9 11 46 | syl2anc |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( N mod ( O ` A ) ) = ( N - ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) ) ) | 
						
							| 48 | 47 | oveq2d |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) + ( N mod ( O ` A ) ) ) = ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) + ( N - ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) ) ) ) | 
						
							| 49 | 22 | nn0cnd |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) e. CC ) | 
						
							| 50 | 8 | nn0cnd |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> N e. CC ) | 
						
							| 51 | 49 50 | pncan3d |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) + ( N - ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) ) ) = N ) | 
						
							| 52 | 48 51 | eqtrd |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) + ( N mod ( O ` A ) ) ) = N ) | 
						
							| 53 | 52 | oveq1d |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( ( ( O ` A ) x. ( |_ ` ( N / ( O ` A ) ) ) ) + ( N mod ( O ` A ) ) ) .x. A ) = ( N .x. A ) ) | 
						
							| 54 | 1 3 5 25 26 | mulgnn0cld |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( N mod ( O ` A ) ) .x. A ) e. X ) | 
						
							| 55 | 1 27 4 | mndlid |  |-  ( ( G e. Mnd /\ ( ( N mod ( O ` A ) ) .x. A ) e. X ) -> ( .0. ( +g ` G ) ( ( N mod ( O ` A ) ) .x. A ) ) = ( ( N mod ( O ` A ) ) .x. A ) ) | 
						
							| 56 | 5 54 55 | syl2anc |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( .0. ( +g ` G ) ( ( N mod ( O ` A ) ) .x. A ) ) = ( ( N mod ( O ` A ) ) .x. A ) ) | 
						
							| 57 | 45 53 56 | 3eqtr3rd |  |-  ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( N mod ( O ` A ) ) .x. A ) = ( N .x. A ) ) |