| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odmulgid.1 |  |-  X = ( Base ` G ) | 
						
							| 2 |  | odmulgid.2 |  |-  O = ( od ` G ) | 
						
							| 3 |  | odmulgid.3 |  |-  .x. = ( .g ` G ) | 
						
							| 4 | 1 3 | mulgcl |  |-  ( ( G e. Grp /\ N e. ZZ /\ A e. X ) -> ( N .x. A ) e. X ) | 
						
							| 5 | 4 | 3com23 |  |-  ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( N .x. A ) e. X ) | 
						
							| 6 | 1 2 | odcl |  |-  ( ( N .x. A ) e. X -> ( O ` ( N .x. A ) ) e. NN0 ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( O ` ( N .x. A ) ) e. NN0 ) | 
						
							| 8 | 7 | nn0cnd |  |-  ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( O ` ( N .x. A ) ) e. CC ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 0 ) -> ( O ` ( N .x. A ) ) e. CC ) | 
						
							| 10 | 9 | mul02d |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 0 ) -> ( 0 x. ( O ` ( N .x. A ) ) ) = 0 ) | 
						
							| 11 |  | simpr |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 0 ) -> ( N gcd ( O ` A ) ) = 0 ) | 
						
							| 12 | 11 | oveq1d |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 0 ) -> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) = ( 0 x. ( O ` ( N .x. A ) ) ) ) | 
						
							| 13 |  | simp3 |  |-  ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> N e. ZZ ) | 
						
							| 14 | 1 2 | odcl |  |-  ( A e. X -> ( O ` A ) e. NN0 ) | 
						
							| 15 | 14 | 3ad2ant2 |  |-  ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( O ` A ) e. NN0 ) | 
						
							| 16 | 15 | nn0zd |  |-  ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( O ` A ) e. ZZ ) | 
						
							| 17 |  | gcdeq0 |  |-  ( ( N e. ZZ /\ ( O ` A ) e. ZZ ) -> ( ( N gcd ( O ` A ) ) = 0 <-> ( N = 0 /\ ( O ` A ) = 0 ) ) ) | 
						
							| 18 | 13 16 17 | syl2anc |  |-  ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( ( N gcd ( O ` A ) ) = 0 <-> ( N = 0 /\ ( O ` A ) = 0 ) ) ) | 
						
							| 19 | 18 | simplbda |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 0 ) -> ( O ` A ) = 0 ) | 
						
							| 20 | 10 12 19 | 3eqtr4rd |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) = 0 ) -> ( O ` A ) = ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) ) | 
						
							| 21 |  | simpll3 |  |-  ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ x e. NN0 ) -> N e. ZZ ) | 
						
							| 22 | 16 | ad2antrr |  |-  ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ x e. NN0 ) -> ( O ` A ) e. ZZ ) | 
						
							| 23 |  | gcddvds |  |-  ( ( N e. ZZ /\ ( O ` A ) e. ZZ ) -> ( ( N gcd ( O ` A ) ) || N /\ ( N gcd ( O ` A ) ) || ( O ` A ) ) ) | 
						
							| 24 | 21 22 23 | syl2anc |  |-  ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ x e. NN0 ) -> ( ( N gcd ( O ` A ) ) || N /\ ( N gcd ( O ` A ) ) || ( O ` A ) ) ) | 
						
							| 25 | 24 | simprd |  |-  ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ x e. NN0 ) -> ( N gcd ( O ` A ) ) || ( O ` A ) ) | 
						
							| 26 | 13 16 | gcdcld |  |-  ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( N gcd ( O ` A ) ) e. NN0 ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) -> ( N gcd ( O ` A ) ) e. NN0 ) | 
						
							| 28 | 27 | nn0zd |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) -> ( N gcd ( O ` A ) ) e. ZZ ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ x e. NN0 ) -> ( N gcd ( O ` A ) ) e. ZZ ) | 
						
							| 30 |  | nn0z |  |-  ( x e. NN0 -> x e. ZZ ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ x e. NN0 ) -> x e. ZZ ) | 
						
							| 32 |  | dvdstr |  |-  ( ( ( N gcd ( O ` A ) ) e. ZZ /\ ( O ` A ) e. ZZ /\ x e. ZZ ) -> ( ( ( N gcd ( O ` A ) ) || ( O ` A ) /\ ( O ` A ) || x ) -> ( N gcd ( O ` A ) ) || x ) ) | 
						
							| 33 | 29 22 31 32 | syl3anc |  |-  ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ x e. NN0 ) -> ( ( ( N gcd ( O ` A ) ) || ( O ` A ) /\ ( O ` A ) || x ) -> ( N gcd ( O ` A ) ) || x ) ) | 
						
							| 34 | 25 33 | mpand |  |-  ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ x e. NN0 ) -> ( ( O ` A ) || x -> ( N gcd ( O ` A ) ) || x ) ) | 
						
							| 35 | 7 | nn0zd |  |-  ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( O ` ( N .x. A ) ) e. ZZ ) | 
						
							| 36 | 35 | ad2antrr |  |-  ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ x e. NN0 ) -> ( O ` ( N .x. A ) ) e. ZZ ) | 
						
							| 37 |  | muldvds1 |  |-  ( ( ( N gcd ( O ` A ) ) e. ZZ /\ ( O ` ( N .x. A ) ) e. ZZ /\ x e. ZZ ) -> ( ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || x -> ( N gcd ( O ` A ) ) || x ) ) | 
						
							| 38 | 29 36 31 37 | syl3anc |  |-  ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ x e. NN0 ) -> ( ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || x -> ( N gcd ( O ` A ) ) || x ) ) | 
						
							| 39 |  | dvdszrcl |  |-  ( ( N gcd ( O ` A ) ) || x -> ( ( N gcd ( O ` A ) ) e. ZZ /\ x e. ZZ ) ) | 
						
							| 40 |  | divides |  |-  ( ( ( N gcd ( O ` A ) ) e. ZZ /\ x e. ZZ ) -> ( ( N gcd ( O ` A ) ) || x <-> E. y e. ZZ ( y x. ( N gcd ( O ` A ) ) ) = x ) ) | 
						
							| 41 | 39 40 | syl |  |-  ( ( N gcd ( O ` A ) ) || x -> ( ( N gcd ( O ` A ) ) || x <-> E. y e. ZZ ( y x. ( N gcd ( O ` A ) ) ) = x ) ) | 
						
							| 42 | 41 | ibi |  |-  ( ( N gcd ( O ` A ) ) || x -> E. y e. ZZ ( y x. ( N gcd ( O ` A ) ) ) = x ) | 
						
							| 43 | 35 | adantr |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> ( O ` ( N .x. A ) ) e. ZZ ) | 
						
							| 44 |  | simprr |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> y e. ZZ ) | 
						
							| 45 | 28 | adantrr |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> ( N gcd ( O ` A ) ) e. ZZ ) | 
						
							| 46 |  | simprl |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> ( N gcd ( O ` A ) ) =/= 0 ) | 
						
							| 47 |  | dvdscmulr |  |-  ( ( ( O ` ( N .x. A ) ) e. ZZ /\ y e. ZZ /\ ( ( N gcd ( O ` A ) ) e. ZZ /\ ( N gcd ( O ` A ) ) =/= 0 ) ) -> ( ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || ( ( N gcd ( O ` A ) ) x. y ) <-> ( O ` ( N .x. A ) ) || y ) ) | 
						
							| 48 | 43 44 45 46 47 | syl112anc |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> ( ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || ( ( N gcd ( O ` A ) ) x. y ) <-> ( O ` ( N .x. A ) ) || y ) ) | 
						
							| 49 | 1 2 3 | odmulgid |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ y e. ZZ ) -> ( ( O ` ( N .x. A ) ) || y <-> ( O ` A ) || ( y x. N ) ) ) | 
						
							| 50 | 49 | adantrl |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> ( ( O ` ( N .x. A ) ) || y <-> ( O ` A ) || ( y x. N ) ) ) | 
						
							| 51 |  | simpl3 |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> N e. ZZ ) | 
						
							| 52 |  | dvdsmulgcd |  |-  ( ( y e. ZZ /\ N e. ZZ ) -> ( ( O ` A ) || ( y x. N ) <-> ( O ` A ) || ( y x. ( N gcd ( O ` A ) ) ) ) ) | 
						
							| 53 | 44 51 52 | syl2anc |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> ( ( O ` A ) || ( y x. N ) <-> ( O ` A ) || ( y x. ( N gcd ( O ` A ) ) ) ) ) | 
						
							| 54 | 48 50 53 | 3bitrrd |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> ( ( O ` A ) || ( y x. ( N gcd ( O ` A ) ) ) <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || ( ( N gcd ( O ` A ) ) x. y ) ) ) | 
						
							| 55 | 45 | zcnd |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> ( N gcd ( O ` A ) ) e. CC ) | 
						
							| 56 | 44 | zcnd |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> y e. CC ) | 
						
							| 57 | 55 56 | mulcomd |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> ( ( N gcd ( O ` A ) ) x. y ) = ( y x. ( N gcd ( O ` A ) ) ) ) | 
						
							| 58 | 57 | breq2d |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> ( ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || ( ( N gcd ( O ` A ) ) x. y ) <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || ( y x. ( N gcd ( O ` A ) ) ) ) ) | 
						
							| 59 | 54 58 | bitrd |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( ( N gcd ( O ` A ) ) =/= 0 /\ y e. ZZ ) ) -> ( ( O ` A ) || ( y x. ( N gcd ( O ` A ) ) ) <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || ( y x. ( N gcd ( O ` A ) ) ) ) ) | 
						
							| 60 | 59 | anassrs |  |-  ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ y e. ZZ ) -> ( ( O ` A ) || ( y x. ( N gcd ( O ` A ) ) ) <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || ( y x. ( N gcd ( O ` A ) ) ) ) ) | 
						
							| 61 |  | breq2 |  |-  ( ( y x. ( N gcd ( O ` A ) ) ) = x -> ( ( O ` A ) || ( y x. ( N gcd ( O ` A ) ) ) <-> ( O ` A ) || x ) ) | 
						
							| 62 |  | breq2 |  |-  ( ( y x. ( N gcd ( O ` A ) ) ) = x -> ( ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || ( y x. ( N gcd ( O ` A ) ) ) <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || x ) ) | 
						
							| 63 | 61 62 | bibi12d |  |-  ( ( y x. ( N gcd ( O ` A ) ) ) = x -> ( ( ( O ` A ) || ( y x. ( N gcd ( O ` A ) ) ) <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || ( y x. ( N gcd ( O ` A ) ) ) ) <-> ( ( O ` A ) || x <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || x ) ) ) | 
						
							| 64 | 60 63 | syl5ibcom |  |-  ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ y e. ZZ ) -> ( ( y x. ( N gcd ( O ` A ) ) ) = x -> ( ( O ` A ) || x <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || x ) ) ) | 
						
							| 65 | 64 | rexlimdva |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) -> ( E. y e. ZZ ( y x. ( N gcd ( O ` A ) ) ) = x -> ( ( O ` A ) || x <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || x ) ) ) | 
						
							| 66 | 42 65 | syl5 |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) -> ( ( N gcd ( O ` A ) ) || x -> ( ( O ` A ) || x <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || x ) ) ) | 
						
							| 67 | 66 | adantr |  |-  ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ x e. NN0 ) -> ( ( N gcd ( O ` A ) ) || x -> ( ( O ` A ) || x <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || x ) ) ) | 
						
							| 68 | 34 38 67 | pm5.21ndd |  |-  ( ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) /\ x e. NN0 ) -> ( ( O ` A ) || x <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || x ) ) | 
						
							| 69 | 68 | ralrimiva |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) -> A. x e. NN0 ( ( O ` A ) || x <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || x ) ) | 
						
							| 70 | 15 | adantr |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) -> ( O ` A ) e. NN0 ) | 
						
							| 71 | 7 | adantr |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) -> ( O ` ( N .x. A ) ) e. NN0 ) | 
						
							| 72 | 27 71 | nn0mulcld |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) -> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) e. NN0 ) | 
						
							| 73 |  | dvdsext |  |-  ( ( ( O ` A ) e. NN0 /\ ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) e. NN0 ) -> ( ( O ` A ) = ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) <-> A. x e. NN0 ( ( O ` A ) || x <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || x ) ) ) | 
						
							| 74 | 70 72 73 | syl2anc |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) -> ( ( O ` A ) = ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) <-> A. x e. NN0 ( ( O ` A ) || x <-> ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) || x ) ) ) | 
						
							| 75 | 69 74 | mpbird |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N gcd ( O ` A ) ) =/= 0 ) -> ( O ` A ) = ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) ) | 
						
							| 76 | 20 75 | pm2.61dane |  |-  ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( O ` A ) = ( ( N gcd ( O ` A ) ) x. ( O ` ( N .x. A ) ) ) ) |