Step |
Hyp |
Ref |
Expression |
1 |
|
odmulgid.1 |
|- X = ( Base ` G ) |
2 |
|
odmulgid.2 |
|- O = ( od ` G ) |
3 |
|
odmulgid.3 |
|- .x. = ( .g ` G ) |
4 |
1 2
|
odcl |
|- ( A e. X -> ( O ` A ) e. NN0 ) |
5 |
4
|
nn0zd |
|- ( A e. X -> ( O ` A ) e. ZZ ) |
6 |
5
|
3ad2ant2 |
|- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( O ` A ) e. ZZ ) |
7 |
|
simp3 |
|- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> N e. ZZ ) |
8 |
|
dvdsmul1 |
|- ( ( ( O ` A ) e. ZZ /\ N e. ZZ ) -> ( O ` A ) || ( ( O ` A ) x. N ) ) |
9 |
6 7 8
|
syl2anc |
|- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( O ` A ) || ( ( O ` A ) x. N ) ) |
10 |
1 2 3
|
odmulgid |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( O ` A ) e. ZZ ) -> ( ( O ` ( N .x. A ) ) || ( O ` A ) <-> ( O ` A ) || ( ( O ` A ) x. N ) ) ) |
11 |
6 10
|
mpdan |
|- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( ( O ` ( N .x. A ) ) || ( O ` A ) <-> ( O ` A ) || ( ( O ` A ) x. N ) ) ) |
12 |
9 11
|
mpbird |
|- ( ( G e. Grp /\ A e. X /\ N e. ZZ ) -> ( O ` ( N .x. A ) ) || ( O ` A ) ) |