| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odmulgid.1 |
|- X = ( Base ` G ) |
| 2 |
|
odmulgid.2 |
|- O = ( od ` G ) |
| 3 |
|
odmulgid.3 |
|- .x. = ( .g ` G ) |
| 4 |
|
simpl1 |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ K e. ZZ ) -> G e. Grp ) |
| 5 |
|
simpr |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ K e. ZZ ) -> K e. ZZ ) |
| 6 |
|
simpl3 |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ K e. ZZ ) -> N e. ZZ ) |
| 7 |
|
simpl2 |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ K e. ZZ ) -> A e. X ) |
| 8 |
1 3
|
mulgass |
|- ( ( G e. Grp /\ ( K e. ZZ /\ N e. ZZ /\ A e. X ) ) -> ( ( K x. N ) .x. A ) = ( K .x. ( N .x. A ) ) ) |
| 9 |
4 5 6 7 8
|
syl13anc |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( K x. N ) .x. A ) = ( K .x. ( N .x. A ) ) ) |
| 10 |
9
|
eqeq1d |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( ( K x. N ) .x. A ) = ( 0g ` G ) <-> ( K .x. ( N .x. A ) ) = ( 0g ` G ) ) ) |
| 11 |
5 6
|
zmulcld |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ K e. ZZ ) -> ( K x. N ) e. ZZ ) |
| 12 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 13 |
1 2 3 12
|
oddvds |
|- ( ( G e. Grp /\ A e. X /\ ( K x. N ) e. ZZ ) -> ( ( O ` A ) || ( K x. N ) <-> ( ( K x. N ) .x. A ) = ( 0g ` G ) ) ) |
| 14 |
4 7 11 13
|
syl3anc |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( O ` A ) || ( K x. N ) <-> ( ( K x. N ) .x. A ) = ( 0g ` G ) ) ) |
| 15 |
1 3
|
mulgcl |
|- ( ( G e. Grp /\ N e. ZZ /\ A e. X ) -> ( N .x. A ) e. X ) |
| 16 |
4 6 7 15
|
syl3anc |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ K e. ZZ ) -> ( N .x. A ) e. X ) |
| 17 |
1 2 3 12
|
oddvds |
|- ( ( G e. Grp /\ ( N .x. A ) e. X /\ K e. ZZ ) -> ( ( O ` ( N .x. A ) ) || K <-> ( K .x. ( N .x. A ) ) = ( 0g ` G ) ) ) |
| 18 |
4 16 5 17
|
syl3anc |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( O ` ( N .x. A ) ) || K <-> ( K .x. ( N .x. A ) ) = ( 0g ` G ) ) ) |
| 19 |
10 14 18
|
3bitr4rd |
|- ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( O ` ( N .x. A ) ) || K <-> ( O ` A ) || ( K x. N ) ) ) |