| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odcl.1 |  |-  X = ( Base ` G ) | 
						
							| 2 |  | odcl.2 |  |-  O = ( od ` G ) | 
						
							| 3 |  | odid.3 |  |-  .x. = ( .g ` G ) | 
						
							| 4 |  | odid.4 |  |-  .0. = ( 0g ` G ) | 
						
							| 5 |  | simpl2 |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> A e. X ) | 
						
							| 6 |  | simprl |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> N =/= 0 ) | 
						
							| 7 |  | simpl3 |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> N e. ZZ ) | 
						
							| 8 | 7 | zcnd |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> N e. CC ) | 
						
							| 9 |  | abs00 |  |-  ( N e. CC -> ( ( abs ` N ) = 0 <-> N = 0 ) ) | 
						
							| 10 | 9 | necon3bbid |  |-  ( N e. CC -> ( -. ( abs ` N ) = 0 <-> N =/= 0 ) ) | 
						
							| 11 | 8 10 | syl |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( -. ( abs ` N ) = 0 <-> N =/= 0 ) ) | 
						
							| 12 | 6 11 | mpbird |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> -. ( abs ` N ) = 0 ) | 
						
							| 13 |  | nn0abscl |  |-  ( N e. ZZ -> ( abs ` N ) e. NN0 ) | 
						
							| 14 | 7 13 | syl |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( abs ` N ) e. NN0 ) | 
						
							| 15 |  | elnn0 |  |-  ( ( abs ` N ) e. NN0 <-> ( ( abs ` N ) e. NN \/ ( abs ` N ) = 0 ) ) | 
						
							| 16 | 14 15 | sylib |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( abs ` N ) e. NN \/ ( abs ` N ) = 0 ) ) | 
						
							| 17 | 16 | ord |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( -. ( abs ` N ) e. NN -> ( abs ` N ) = 0 ) ) | 
						
							| 18 | 12 17 | mt3d |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( abs ` N ) e. NN ) | 
						
							| 19 |  | simprr |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( N .x. A ) = .0. ) | 
						
							| 20 |  | oveq1 |  |-  ( ( abs ` N ) = N -> ( ( abs ` N ) .x. A ) = ( N .x. A ) ) | 
						
							| 21 | 20 | eqeq1d |  |-  ( ( abs ` N ) = N -> ( ( ( abs ` N ) .x. A ) = .0. <-> ( N .x. A ) = .0. ) ) | 
						
							| 22 | 19 21 | syl5ibrcom |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( abs ` N ) = N -> ( ( abs ` N ) .x. A ) = .0. ) ) | 
						
							| 23 |  | simpl1 |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> G e. Grp ) | 
						
							| 24 |  | eqid |  |-  ( invg ` G ) = ( invg ` G ) | 
						
							| 25 | 1 3 24 | mulgneg |  |-  ( ( G e. Grp /\ N e. ZZ /\ A e. X ) -> ( -u N .x. A ) = ( ( invg ` G ) ` ( N .x. A ) ) ) | 
						
							| 26 | 23 7 5 25 | syl3anc |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( -u N .x. A ) = ( ( invg ` G ) ` ( N .x. A ) ) ) | 
						
							| 27 | 19 | fveq2d |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( invg ` G ) ` ( N .x. A ) ) = ( ( invg ` G ) ` .0. ) ) | 
						
							| 28 | 4 24 | grpinvid |  |-  ( G e. Grp -> ( ( invg ` G ) ` .0. ) = .0. ) | 
						
							| 29 | 23 28 | syl |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( invg ` G ) ` .0. ) = .0. ) | 
						
							| 30 | 26 27 29 | 3eqtrd |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( -u N .x. A ) = .0. ) | 
						
							| 31 |  | oveq1 |  |-  ( ( abs ` N ) = -u N -> ( ( abs ` N ) .x. A ) = ( -u N .x. A ) ) | 
						
							| 32 | 31 | eqeq1d |  |-  ( ( abs ` N ) = -u N -> ( ( ( abs ` N ) .x. A ) = .0. <-> ( -u N .x. A ) = .0. ) ) | 
						
							| 33 | 30 32 | syl5ibrcom |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( abs ` N ) = -u N -> ( ( abs ` N ) .x. A ) = .0. ) ) | 
						
							| 34 | 7 | zred |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> N e. RR ) | 
						
							| 35 | 34 | absord |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) | 
						
							| 36 | 22 33 35 | mpjaod |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( ( abs ` N ) .x. A ) = .0. ) | 
						
							| 37 | 1 2 3 4 | odlem2 |  |-  ( ( A e. X /\ ( abs ` N ) e. NN /\ ( ( abs ` N ) .x. A ) = .0. ) -> ( O ` A ) e. ( 1 ... ( abs ` N ) ) ) | 
						
							| 38 | 5 18 36 37 | syl3anc |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( O ` A ) e. ( 1 ... ( abs ` N ) ) ) | 
						
							| 39 |  | elfznn |  |-  ( ( O ` A ) e. ( 1 ... ( abs ` N ) ) -> ( O ` A ) e. NN ) | 
						
							| 40 | 38 39 | syl |  |-  ( ( ( G e. Grp /\ A e. X /\ N e. ZZ ) /\ ( N =/= 0 /\ ( N .x. A ) = .0. ) ) -> ( O ` A ) e. NN ) |