| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odsubdvds.1 |
|- O = ( od ` G ) |
| 2 |
|
eqid |
|- ( G |`s S ) = ( G |`s S ) |
| 3 |
2
|
subggrp |
|- ( S e. ( SubGrp ` G ) -> ( G |`s S ) e. Grp ) |
| 4 |
3
|
3ad2ant1 |
|- ( ( S e. ( SubGrp ` G ) /\ S e. Fin /\ A e. S ) -> ( G |`s S ) e. Grp ) |
| 5 |
2
|
subgbas |
|- ( S e. ( SubGrp ` G ) -> S = ( Base ` ( G |`s S ) ) ) |
| 6 |
5
|
3ad2ant1 |
|- ( ( S e. ( SubGrp ` G ) /\ S e. Fin /\ A e. S ) -> S = ( Base ` ( G |`s S ) ) ) |
| 7 |
|
simp2 |
|- ( ( S e. ( SubGrp ` G ) /\ S e. Fin /\ A e. S ) -> S e. Fin ) |
| 8 |
6 7
|
eqeltrrd |
|- ( ( S e. ( SubGrp ` G ) /\ S e. Fin /\ A e. S ) -> ( Base ` ( G |`s S ) ) e. Fin ) |
| 9 |
|
simp3 |
|- ( ( S e. ( SubGrp ` G ) /\ S e. Fin /\ A e. S ) -> A e. S ) |
| 10 |
9 6
|
eleqtrd |
|- ( ( S e. ( SubGrp ` G ) /\ S e. Fin /\ A e. S ) -> A e. ( Base ` ( G |`s S ) ) ) |
| 11 |
|
eqid |
|- ( Base ` ( G |`s S ) ) = ( Base ` ( G |`s S ) ) |
| 12 |
|
eqid |
|- ( od ` ( G |`s S ) ) = ( od ` ( G |`s S ) ) |
| 13 |
11 12
|
oddvds2 |
|- ( ( ( G |`s S ) e. Grp /\ ( Base ` ( G |`s S ) ) e. Fin /\ A e. ( Base ` ( G |`s S ) ) ) -> ( ( od ` ( G |`s S ) ) ` A ) || ( # ` ( Base ` ( G |`s S ) ) ) ) |
| 14 |
4 8 10 13
|
syl3anc |
|- ( ( S e. ( SubGrp ` G ) /\ S e. Fin /\ A e. S ) -> ( ( od ` ( G |`s S ) ) ` A ) || ( # ` ( Base ` ( G |`s S ) ) ) ) |
| 15 |
2 1 12
|
subgod |
|- ( ( S e. ( SubGrp ` G ) /\ A e. S ) -> ( O ` A ) = ( ( od ` ( G |`s S ) ) ` A ) ) |
| 16 |
15
|
3adant2 |
|- ( ( S e. ( SubGrp ` G ) /\ S e. Fin /\ A e. S ) -> ( O ` A ) = ( ( od ` ( G |`s S ) ) ` A ) ) |
| 17 |
6
|
fveq2d |
|- ( ( S e. ( SubGrp ` G ) /\ S e. Fin /\ A e. S ) -> ( # ` S ) = ( # ` ( Base ` ( G |`s S ) ) ) ) |
| 18 |
14 16 17
|
3brtr4d |
|- ( ( S e. ( SubGrp ` G ) /\ S e. Fin /\ A e. S ) -> ( O ` A ) || ( # ` S ) ) |