Step |
Hyp |
Ref |
Expression |
1 |
|
oduval.d |
|- D = ( ODual ` O ) |
2 |
|
odubas.b |
|- B = ( Base ` O ) |
3 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
4 |
|
1re |
|- 1 e. RR |
5 |
|
1lt10 |
|- 1 < ; 1 0 |
6 |
4 5
|
ltneii |
|- 1 =/= ; 1 0 |
7 |
|
basendx |
|- ( Base ` ndx ) = 1 |
8 |
|
plendx |
|- ( le ` ndx ) = ; 1 0 |
9 |
7 8
|
neeq12i |
|- ( ( Base ` ndx ) =/= ( le ` ndx ) <-> 1 =/= ; 1 0 ) |
10 |
6 9
|
mpbir |
|- ( Base ` ndx ) =/= ( le ` ndx ) |
11 |
3 10
|
setsnid |
|- ( Base ` O ) = ( Base ` ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) ) |
12 |
|
eqid |
|- ( le ` O ) = ( le ` O ) |
13 |
1 12
|
oduval |
|- D = ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) |
14 |
13
|
fveq2i |
|- ( Base ` D ) = ( Base ` ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) ) |
15 |
11 2 14
|
3eqtr4i |
|- B = ( Base ` D ) |