Step |
Hyp |
Ref |
Expression |
1 |
|
odulat.d |
|- D = ( ODual ` O ) |
2 |
1
|
oduposb |
|- ( O e. V -> ( O e. Poset <-> D e. Poset ) ) |
3 |
|
ancom |
|- ( ( dom ( join ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) /\ dom ( meet ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) ) <-> ( dom ( meet ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) /\ dom ( join ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) ) ) |
4 |
3
|
a1i |
|- ( O e. V -> ( ( dom ( join ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) /\ dom ( meet ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) ) <-> ( dom ( meet ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) /\ dom ( join ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) ) ) ) |
5 |
2 4
|
anbi12d |
|- ( O e. V -> ( ( O e. Poset /\ ( dom ( join ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) /\ dom ( meet ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) ) ) <-> ( D e. Poset /\ ( dom ( meet ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) /\ dom ( join ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) ) ) ) ) |
6 |
|
eqid |
|- ( Base ` O ) = ( Base ` O ) |
7 |
|
eqid |
|- ( join ` O ) = ( join ` O ) |
8 |
|
eqid |
|- ( meet ` O ) = ( meet ` O ) |
9 |
6 7 8
|
islat |
|- ( O e. Lat <-> ( O e. Poset /\ ( dom ( join ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) /\ dom ( meet ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) ) ) ) |
10 |
1 6
|
odubas |
|- ( Base ` O ) = ( Base ` D ) |
11 |
1 8
|
odujoin |
|- ( meet ` O ) = ( join ` D ) |
12 |
1 7
|
odumeet |
|- ( join ` O ) = ( meet ` D ) |
13 |
10 11 12
|
islat |
|- ( D e. Lat <-> ( D e. Poset /\ ( dom ( meet ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) /\ dom ( join ` O ) = ( ( Base ` O ) X. ( Base ` O ) ) ) ) ) |
14 |
5 9 13
|
3bitr4g |
|- ( O e. V -> ( O e. Lat <-> D e. Lat ) ) |