Description: Truth of the less-equal relation in an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oduval.d | |- D = ( ODual ` O ) |
|
oduval.l | |- .<_ = ( le ` O ) |
||
oduleg.g | |- G = ( le ` D ) |
||
Assertion | oduleg | |- ( ( A e. V /\ B e. W ) -> ( A G B <-> B .<_ A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oduval.d | |- D = ( ODual ` O ) |
|
2 | oduval.l | |- .<_ = ( le ` O ) |
|
3 | oduleg.g | |- G = ( le ` D ) |
|
4 | 1 2 | oduleval | |- `' .<_ = ( le ` D ) |
5 | 3 4 | eqtr4i | |- G = `' .<_ |
6 | 5 | breqi | |- ( A G B <-> A `' .<_ B ) |
7 | brcnvg | |- ( ( A e. V /\ B e. W ) -> ( A `' .<_ B <-> B .<_ A ) ) |
|
8 | 6 7 | syl5bb | |- ( ( A e. V /\ B e. W ) -> ( A G B <-> B .<_ A ) ) |