Metamath Proof Explorer


Theorem oduleg

Description: Truth of the less-equal relation in an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypotheses oduval.d
|- D = ( ODual ` O )
oduval.l
|- .<_ = ( le ` O )
oduleg.g
|- G = ( le ` D )
Assertion oduleg
|- ( ( A e. V /\ B e. W ) -> ( A G B <-> B .<_ A ) )

Proof

Step Hyp Ref Expression
1 oduval.d
 |-  D = ( ODual ` O )
2 oduval.l
 |-  .<_ = ( le ` O )
3 oduleg.g
 |-  G = ( le ` D )
4 1 2 oduleval
 |-  `' .<_ = ( le ` D )
5 3 4 eqtr4i
 |-  G = `' .<_
6 5 breqi
 |-  ( A G B <-> A `' .<_ B )
7 brcnvg
 |-  ( ( A e. V /\ B e. W ) -> ( A `' .<_ B <-> B .<_ A ) )
8 6 7 syl5bb
 |-  ( ( A e. V /\ B e. W ) -> ( A G B <-> B .<_ A ) )