| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odupos.d |  |-  D = ( ODual ` O ) | 
						
							| 2 | 1 | fvexi |  |-  D e. _V | 
						
							| 3 | 2 | a1i |  |-  ( O e. Poset -> D e. _V ) | 
						
							| 4 |  | eqid |  |-  ( Base ` O ) = ( Base ` O ) | 
						
							| 5 | 1 4 | odubas |  |-  ( Base ` O ) = ( Base ` D ) | 
						
							| 6 | 5 | a1i |  |-  ( O e. Poset -> ( Base ` O ) = ( Base ` D ) ) | 
						
							| 7 |  | eqid |  |-  ( le ` O ) = ( le ` O ) | 
						
							| 8 | 1 7 | oduleval |  |-  `' ( le ` O ) = ( le ` D ) | 
						
							| 9 | 8 | a1i |  |-  ( O e. Poset -> `' ( le ` O ) = ( le ` D ) ) | 
						
							| 10 | 4 7 | posref |  |-  ( ( O e. Poset /\ a e. ( Base ` O ) ) -> a ( le ` O ) a ) | 
						
							| 11 |  | vex |  |-  a e. _V | 
						
							| 12 | 11 11 | brcnv |  |-  ( a `' ( le ` O ) a <-> a ( le ` O ) a ) | 
						
							| 13 | 10 12 | sylibr |  |-  ( ( O e. Poset /\ a e. ( Base ` O ) ) -> a `' ( le ` O ) a ) | 
						
							| 14 |  | vex |  |-  b e. _V | 
						
							| 15 | 11 14 | brcnv |  |-  ( a `' ( le ` O ) b <-> b ( le ` O ) a ) | 
						
							| 16 | 14 11 | brcnv |  |-  ( b `' ( le ` O ) a <-> a ( le ` O ) b ) | 
						
							| 17 | 15 16 | anbi12ci |  |-  ( ( a `' ( le ` O ) b /\ b `' ( le ` O ) a ) <-> ( a ( le ` O ) b /\ b ( le ` O ) a ) ) | 
						
							| 18 | 4 7 | posasymb |  |-  ( ( O e. Poset /\ a e. ( Base ` O ) /\ b e. ( Base ` O ) ) -> ( ( a ( le ` O ) b /\ b ( le ` O ) a ) <-> a = b ) ) | 
						
							| 19 | 18 | biimpd |  |-  ( ( O e. Poset /\ a e. ( Base ` O ) /\ b e. ( Base ` O ) ) -> ( ( a ( le ` O ) b /\ b ( le ` O ) a ) -> a = b ) ) | 
						
							| 20 | 17 19 | biimtrid |  |-  ( ( O e. Poset /\ a e. ( Base ` O ) /\ b e. ( Base ` O ) ) -> ( ( a `' ( le ` O ) b /\ b `' ( le ` O ) a ) -> a = b ) ) | 
						
							| 21 |  | 3anrev |  |-  ( ( a e. ( Base ` O ) /\ b e. ( Base ` O ) /\ c e. ( Base ` O ) ) <-> ( c e. ( Base ` O ) /\ b e. ( Base ` O ) /\ a e. ( Base ` O ) ) ) | 
						
							| 22 | 4 7 | postr |  |-  ( ( O e. Poset /\ ( c e. ( Base ` O ) /\ b e. ( Base ` O ) /\ a e. ( Base ` O ) ) ) -> ( ( c ( le ` O ) b /\ b ( le ` O ) a ) -> c ( le ` O ) a ) ) | 
						
							| 23 | 21 22 | sylan2b |  |-  ( ( O e. Poset /\ ( a e. ( Base ` O ) /\ b e. ( Base ` O ) /\ c e. ( Base ` O ) ) ) -> ( ( c ( le ` O ) b /\ b ( le ` O ) a ) -> c ( le ` O ) a ) ) | 
						
							| 24 |  | vex |  |-  c e. _V | 
						
							| 25 | 14 24 | brcnv |  |-  ( b `' ( le ` O ) c <-> c ( le ` O ) b ) | 
						
							| 26 | 15 25 | anbi12ci |  |-  ( ( a `' ( le ` O ) b /\ b `' ( le ` O ) c ) <-> ( c ( le ` O ) b /\ b ( le ` O ) a ) ) | 
						
							| 27 | 11 24 | brcnv |  |-  ( a `' ( le ` O ) c <-> c ( le ` O ) a ) | 
						
							| 28 | 23 26 27 | 3imtr4g |  |-  ( ( O e. Poset /\ ( a e. ( Base ` O ) /\ b e. ( Base ` O ) /\ c e. ( Base ` O ) ) ) -> ( ( a `' ( le ` O ) b /\ b `' ( le ` O ) c ) -> a `' ( le ` O ) c ) ) | 
						
							| 29 | 3 6 9 13 20 28 | isposd |  |-  ( O e. Poset -> D e. Poset ) |