Step |
Hyp |
Ref |
Expression |
1 |
|
odupos.d |
|- D = ( ODual ` O ) |
2 |
1
|
fvexi |
|- D e. _V |
3 |
2
|
a1i |
|- ( O e. Poset -> D e. _V ) |
4 |
|
eqid |
|- ( Base ` O ) = ( Base ` O ) |
5 |
1 4
|
odubas |
|- ( Base ` O ) = ( Base ` D ) |
6 |
5
|
a1i |
|- ( O e. Poset -> ( Base ` O ) = ( Base ` D ) ) |
7 |
|
eqid |
|- ( le ` O ) = ( le ` O ) |
8 |
1 7
|
oduleval |
|- `' ( le ` O ) = ( le ` D ) |
9 |
8
|
a1i |
|- ( O e. Poset -> `' ( le ` O ) = ( le ` D ) ) |
10 |
4 7
|
posref |
|- ( ( O e. Poset /\ a e. ( Base ` O ) ) -> a ( le ` O ) a ) |
11 |
|
vex |
|- a e. _V |
12 |
11 11
|
brcnv |
|- ( a `' ( le ` O ) a <-> a ( le ` O ) a ) |
13 |
10 12
|
sylibr |
|- ( ( O e. Poset /\ a e. ( Base ` O ) ) -> a `' ( le ` O ) a ) |
14 |
|
vex |
|- b e. _V |
15 |
11 14
|
brcnv |
|- ( a `' ( le ` O ) b <-> b ( le ` O ) a ) |
16 |
14 11
|
brcnv |
|- ( b `' ( le ` O ) a <-> a ( le ` O ) b ) |
17 |
15 16
|
anbi12ci |
|- ( ( a `' ( le ` O ) b /\ b `' ( le ` O ) a ) <-> ( a ( le ` O ) b /\ b ( le ` O ) a ) ) |
18 |
4 7
|
posasymb |
|- ( ( O e. Poset /\ a e. ( Base ` O ) /\ b e. ( Base ` O ) ) -> ( ( a ( le ` O ) b /\ b ( le ` O ) a ) <-> a = b ) ) |
19 |
18
|
biimpd |
|- ( ( O e. Poset /\ a e. ( Base ` O ) /\ b e. ( Base ` O ) ) -> ( ( a ( le ` O ) b /\ b ( le ` O ) a ) -> a = b ) ) |
20 |
17 19
|
syl5bi |
|- ( ( O e. Poset /\ a e. ( Base ` O ) /\ b e. ( Base ` O ) ) -> ( ( a `' ( le ` O ) b /\ b `' ( le ` O ) a ) -> a = b ) ) |
21 |
|
3anrev |
|- ( ( a e. ( Base ` O ) /\ b e. ( Base ` O ) /\ c e. ( Base ` O ) ) <-> ( c e. ( Base ` O ) /\ b e. ( Base ` O ) /\ a e. ( Base ` O ) ) ) |
22 |
4 7
|
postr |
|- ( ( O e. Poset /\ ( c e. ( Base ` O ) /\ b e. ( Base ` O ) /\ a e. ( Base ` O ) ) ) -> ( ( c ( le ` O ) b /\ b ( le ` O ) a ) -> c ( le ` O ) a ) ) |
23 |
21 22
|
sylan2b |
|- ( ( O e. Poset /\ ( a e. ( Base ` O ) /\ b e. ( Base ` O ) /\ c e. ( Base ` O ) ) ) -> ( ( c ( le ` O ) b /\ b ( le ` O ) a ) -> c ( le ` O ) a ) ) |
24 |
|
vex |
|- c e. _V |
25 |
14 24
|
brcnv |
|- ( b `' ( le ` O ) c <-> c ( le ` O ) b ) |
26 |
15 25
|
anbi12ci |
|- ( ( a `' ( le ` O ) b /\ b `' ( le ` O ) c ) <-> ( c ( le ` O ) b /\ b ( le ` O ) a ) ) |
27 |
11 24
|
brcnv |
|- ( a `' ( le ` O ) c <-> c ( le ` O ) a ) |
28 |
23 26 27
|
3imtr4g |
|- ( ( O e. Poset /\ ( a e. ( Base ` O ) /\ b e. ( Base ` O ) /\ c e. ( Base ` O ) ) ) -> ( ( a `' ( le ` O ) b /\ b `' ( le ` O ) c ) -> a `' ( le ` O ) c ) ) |
29 |
3 6 9 13 20 28
|
isposd |
|- ( O e. Poset -> D e. Poset ) |