Step |
Hyp |
Ref |
Expression |
1 |
|
odupos.d |
|- D = ( ODual ` O ) |
2 |
1
|
odupos |
|- ( O e. Poset -> D e. Poset ) |
3 |
|
eqid |
|- ( ODual ` D ) = ( ODual ` D ) |
4 |
3
|
odupos |
|- ( D e. Poset -> ( ODual ` D ) e. Poset ) |
5 |
|
fvexd |
|- ( O e. V -> ( ODual ` D ) e. _V ) |
6 |
|
id |
|- ( O e. V -> O e. V ) |
7 |
|
eqid |
|- ( Base ` O ) = ( Base ` O ) |
8 |
1 7
|
odubas |
|- ( Base ` O ) = ( Base ` D ) |
9 |
3 8
|
odubas |
|- ( Base ` O ) = ( Base ` ( ODual ` D ) ) |
10 |
9
|
a1i |
|- ( O e. V -> ( Base ` O ) = ( Base ` ( ODual ` D ) ) ) |
11 |
|
eqidd |
|- ( O e. V -> ( Base ` O ) = ( Base ` O ) ) |
12 |
|
eqid |
|- ( le ` O ) = ( le ` O ) |
13 |
1 12
|
oduleval |
|- `' ( le ` O ) = ( le ` D ) |
14 |
3 13
|
oduleval |
|- `' `' ( le ` O ) = ( le ` ( ODual ` D ) ) |
15 |
14
|
eqcomi |
|- ( le ` ( ODual ` D ) ) = `' `' ( le ` O ) |
16 |
15
|
breqi |
|- ( a ( le ` ( ODual ` D ) ) b <-> a `' `' ( le ` O ) b ) |
17 |
|
vex |
|- a e. _V |
18 |
|
vex |
|- b e. _V |
19 |
17 18
|
brcnv |
|- ( a `' `' ( le ` O ) b <-> b `' ( le ` O ) a ) |
20 |
18 17
|
brcnv |
|- ( b `' ( le ` O ) a <-> a ( le ` O ) b ) |
21 |
16 19 20
|
3bitri |
|- ( a ( le ` ( ODual ` D ) ) b <-> a ( le ` O ) b ) |
22 |
21
|
a1i |
|- ( ( O e. V /\ ( a e. ( Base ` O ) /\ b e. ( Base ` O ) ) ) -> ( a ( le ` ( ODual ` D ) ) b <-> a ( le ` O ) b ) ) |
23 |
5 6 10 11 22
|
pospropd |
|- ( O e. V -> ( ( ODual ` D ) e. Poset <-> O e. Poset ) ) |
24 |
4 23
|
syl5ib |
|- ( O e. V -> ( D e. Poset -> O e. Poset ) ) |
25 |
2 24
|
impbid2 |
|- ( O e. V -> ( O e. Poset <-> D e. Poset ) ) |