Step |
Hyp |
Ref |
Expression |
1 |
|
oduval.d |
|- D = ( ODual ` O ) |
2 |
|
oduval.l |
|- .<_ = ( le ` O ) |
3 |
|
id |
|- ( a = O -> a = O ) |
4 |
|
fveq2 |
|- ( a = O -> ( le ` a ) = ( le ` O ) ) |
5 |
4
|
cnveqd |
|- ( a = O -> `' ( le ` a ) = `' ( le ` O ) ) |
6 |
5
|
opeq2d |
|- ( a = O -> <. ( le ` ndx ) , `' ( le ` a ) >. = <. ( le ` ndx ) , `' ( le ` O ) >. ) |
7 |
3 6
|
oveq12d |
|- ( a = O -> ( a sSet <. ( le ` ndx ) , `' ( le ` a ) >. ) = ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) ) |
8 |
|
df-odu |
|- ODual = ( a e. _V |-> ( a sSet <. ( le ` ndx ) , `' ( le ` a ) >. ) ) |
9 |
|
ovex |
|- ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) e. _V |
10 |
7 8 9
|
fvmpt |
|- ( O e. _V -> ( ODual ` O ) = ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) ) |
11 |
|
fvprc |
|- ( -. O e. _V -> ( ODual ` O ) = (/) ) |
12 |
|
reldmsets |
|- Rel dom sSet |
13 |
12
|
ovprc1 |
|- ( -. O e. _V -> ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) = (/) ) |
14 |
11 13
|
eqtr4d |
|- ( -. O e. _V -> ( ODual ` O ) = ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) ) |
15 |
10 14
|
pm2.61i |
|- ( ODual ` O ) = ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) |
16 |
2
|
cnveqi |
|- `' .<_ = `' ( le ` O ) |
17 |
16
|
opeq2i |
|- <. ( le ` ndx ) , `' .<_ >. = <. ( le ` ndx ) , `' ( le ` O ) >. |
18 |
17
|
oveq2i |
|- ( O sSet <. ( le ` ndx ) , `' .<_ >. ) = ( O sSet <. ( le ` ndx ) , `' ( le ` O ) >. ) |
19 |
15 1 18
|
3eqtr4i |
|- D = ( O sSet <. ( le ` ndx ) , `' .<_ >. ) |