Step |
Hyp |
Ref |
Expression |
1 |
|
odval.1 |
|- X = ( Base ` G ) |
2 |
|
odval.2 |
|- .x. = ( .g ` G ) |
3 |
|
odval.3 |
|- .0. = ( 0g ` G ) |
4 |
|
odval.4 |
|- O = ( od ` G ) |
5 |
|
odval.i |
|- I = { y e. NN | ( y .x. A ) = .0. } |
6 |
|
oveq2 |
|- ( x = A -> ( y .x. x ) = ( y .x. A ) ) |
7 |
6
|
eqeq1d |
|- ( x = A -> ( ( y .x. x ) = .0. <-> ( y .x. A ) = .0. ) ) |
8 |
7
|
rabbidv |
|- ( x = A -> { y e. NN | ( y .x. x ) = .0. } = { y e. NN | ( y .x. A ) = .0. } ) |
9 |
8 5
|
eqtr4di |
|- ( x = A -> { y e. NN | ( y .x. x ) = .0. } = I ) |
10 |
9
|
csbeq1d |
|- ( x = A -> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) = [_ I / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) |
11 |
|
nnex |
|- NN e. _V |
12 |
5 11
|
rabex2 |
|- I e. _V |
13 |
|
eqeq1 |
|- ( i = I -> ( i = (/) <-> I = (/) ) ) |
14 |
|
infeq1 |
|- ( i = I -> inf ( i , RR , < ) = inf ( I , RR , < ) ) |
15 |
13 14
|
ifbieq2d |
|- ( i = I -> if ( i = (/) , 0 , inf ( i , RR , < ) ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) ) |
16 |
12 15
|
csbie |
|- [_ I / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) |
17 |
10 16
|
eqtrdi |
|- ( x = A -> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) ) |
18 |
1 2 3 4
|
odfval |
|- O = ( x e. X |-> [_ { y e. NN | ( y .x. x ) = .0. } / i ]_ if ( i = (/) , 0 , inf ( i , RR , < ) ) ) |
19 |
|
c0ex |
|- 0 e. _V |
20 |
|
ltso |
|- < Or RR |
21 |
20
|
infex |
|- inf ( I , RR , < ) e. _V |
22 |
19 21
|
ifex |
|- if ( I = (/) , 0 , inf ( I , RR , < ) ) e. _V |
23 |
17 18 22
|
fvmpt |
|- ( A e. X -> ( O ` A ) = if ( I = (/) , 0 , inf ( I , RR , < ) ) ) |