Metamath Proof Explorer


Theorem odzcl

Description: The order of a group element is an integer. (Contributed by Mario Carneiro, 28-Feb-2014)

Ref Expression
Assertion odzcl
|- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( odZ ` N ) ` A ) e. NN )

Proof

Step Hyp Ref Expression
1 odzcllem
 |-  ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( ( odZ ` N ) ` A ) e. NN /\ N || ( ( A ^ ( ( odZ ` N ) ` A ) ) - 1 ) ) )
2 1 simpld
 |-  ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( odZ ` N ) ` A ) e. NN )