Step |
Hyp |
Ref |
Expression |
1 |
|
odzval |
|- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( odZ ` N ) ` A ) = inf ( { n e. NN | N || ( ( A ^ n ) - 1 ) } , RR , < ) ) |
2 |
|
ssrab2 |
|- { n e. NN | N || ( ( A ^ n ) - 1 ) } C_ NN |
3 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
4 |
2 3
|
sseqtri |
|- { n e. NN | N || ( ( A ^ n ) - 1 ) } C_ ( ZZ>= ` 1 ) |
5 |
|
phicl |
|- ( N e. NN -> ( phi ` N ) e. NN ) |
6 |
5
|
3ad2ant1 |
|- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( phi ` N ) e. NN ) |
7 |
|
eulerth |
|- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( A ^ ( phi ` N ) ) mod N ) = ( 1 mod N ) ) |
8 |
|
simp1 |
|- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> N e. NN ) |
9 |
|
simp2 |
|- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> A e. ZZ ) |
10 |
6
|
nnnn0d |
|- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( phi ` N ) e. NN0 ) |
11 |
|
zexpcl |
|- ( ( A e. ZZ /\ ( phi ` N ) e. NN0 ) -> ( A ^ ( phi ` N ) ) e. ZZ ) |
12 |
9 10 11
|
syl2anc |
|- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( A ^ ( phi ` N ) ) e. ZZ ) |
13 |
|
1z |
|- 1 e. ZZ |
14 |
|
moddvds |
|- ( ( N e. NN /\ ( A ^ ( phi ` N ) ) e. ZZ /\ 1 e. ZZ ) -> ( ( ( A ^ ( phi ` N ) ) mod N ) = ( 1 mod N ) <-> N || ( ( A ^ ( phi ` N ) ) - 1 ) ) ) |
15 |
13 14
|
mp3an3 |
|- ( ( N e. NN /\ ( A ^ ( phi ` N ) ) e. ZZ ) -> ( ( ( A ^ ( phi ` N ) ) mod N ) = ( 1 mod N ) <-> N || ( ( A ^ ( phi ` N ) ) - 1 ) ) ) |
16 |
8 12 15
|
syl2anc |
|- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( ( A ^ ( phi ` N ) ) mod N ) = ( 1 mod N ) <-> N || ( ( A ^ ( phi ` N ) ) - 1 ) ) ) |
17 |
7 16
|
mpbid |
|- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> N || ( ( A ^ ( phi ` N ) ) - 1 ) ) |
18 |
|
oveq2 |
|- ( n = ( phi ` N ) -> ( A ^ n ) = ( A ^ ( phi ` N ) ) ) |
19 |
18
|
oveq1d |
|- ( n = ( phi ` N ) -> ( ( A ^ n ) - 1 ) = ( ( A ^ ( phi ` N ) ) - 1 ) ) |
20 |
19
|
breq2d |
|- ( n = ( phi ` N ) -> ( N || ( ( A ^ n ) - 1 ) <-> N || ( ( A ^ ( phi ` N ) ) - 1 ) ) ) |
21 |
20
|
rspcev |
|- ( ( ( phi ` N ) e. NN /\ N || ( ( A ^ ( phi ` N ) ) - 1 ) ) -> E. n e. NN N || ( ( A ^ n ) - 1 ) ) |
22 |
6 17 21
|
syl2anc |
|- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> E. n e. NN N || ( ( A ^ n ) - 1 ) ) |
23 |
|
rabn0 |
|- ( { n e. NN | N || ( ( A ^ n ) - 1 ) } =/= (/) <-> E. n e. NN N || ( ( A ^ n ) - 1 ) ) |
24 |
22 23
|
sylibr |
|- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> { n e. NN | N || ( ( A ^ n ) - 1 ) } =/= (/) ) |
25 |
|
infssuzcl |
|- ( ( { n e. NN | N || ( ( A ^ n ) - 1 ) } C_ ( ZZ>= ` 1 ) /\ { n e. NN | N || ( ( A ^ n ) - 1 ) } =/= (/) ) -> inf ( { n e. NN | N || ( ( A ^ n ) - 1 ) } , RR , < ) e. { n e. NN | N || ( ( A ^ n ) - 1 ) } ) |
26 |
4 24 25
|
sylancr |
|- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> inf ( { n e. NN | N || ( ( A ^ n ) - 1 ) } , RR , < ) e. { n e. NN | N || ( ( A ^ n ) - 1 ) } ) |
27 |
1 26
|
eqeltrd |
|- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( odZ ` N ) ` A ) e. { n e. NN | N || ( ( A ^ n ) - 1 ) } ) |
28 |
|
oveq2 |
|- ( n = ( ( odZ ` N ) ` A ) -> ( A ^ n ) = ( A ^ ( ( odZ ` N ) ` A ) ) ) |
29 |
28
|
oveq1d |
|- ( n = ( ( odZ ` N ) ` A ) -> ( ( A ^ n ) - 1 ) = ( ( A ^ ( ( odZ ` N ) ` A ) ) - 1 ) ) |
30 |
29
|
breq2d |
|- ( n = ( ( odZ ` N ) ` A ) -> ( N || ( ( A ^ n ) - 1 ) <-> N || ( ( A ^ ( ( odZ ` N ) ` A ) ) - 1 ) ) ) |
31 |
30
|
elrab |
|- ( ( ( odZ ` N ) ` A ) e. { n e. NN | N || ( ( A ^ n ) - 1 ) } <-> ( ( ( odZ ` N ) ` A ) e. NN /\ N || ( ( A ^ ( ( odZ ` N ) ` A ) ) - 1 ) ) ) |
32 |
27 31
|
sylib |
|- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( ( odZ ` N ) ` A ) e. NN /\ N || ( ( A ^ ( ( odZ ` N ) ` A ) ) - 1 ) ) ) |