Metamath Proof Explorer


Theorem odzid

Description: Any element raised to the power of its order is 1 . (Contributed by Mario Carneiro, 28-Feb-2014)

Ref Expression
Assertion odzid
|- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> N || ( ( A ^ ( ( odZ ` N ) ` A ) ) - 1 ) )

Proof

Step Hyp Ref Expression
1 odzcllem
 |-  ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( ( odZ ` N ) ` A ) e. NN /\ N || ( ( A ^ ( ( odZ ` N ) ` A ) ) - 1 ) ) )
2 1 simprd
 |-  ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> N || ( ( A ^ ( ( odZ ` N ) ` A ) ) - 1 ) )