Description: Any element raised to the power of its order is 1 . (Contributed by Mario Carneiro, 28-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | odzid | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> N || ( ( A ^ ( ( odZ ` N ) ` A ) ) - 1 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odzcllem | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( ( odZ ` N ) ` A ) e. NN /\ N || ( ( A ^ ( ( odZ ` N ) ` A ) ) - 1 ) ) ) |
|
2 | 1 | simprd | |- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> N || ( ( A ^ ( ( odZ ` N ) ` A ) ) - 1 ) ) |