| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eulerth |  |-  ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( A ^ ( phi ` N ) ) mod N ) = ( 1 mod N ) ) | 
						
							| 2 |  | simp1 |  |-  ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> N e. NN ) | 
						
							| 3 |  | simp2 |  |-  ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> A e. ZZ ) | 
						
							| 4 | 2 | phicld |  |-  ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( phi ` N ) e. NN ) | 
						
							| 5 | 4 | nnnn0d |  |-  ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( phi ` N ) e. NN0 ) | 
						
							| 6 |  | zexpcl |  |-  ( ( A e. ZZ /\ ( phi ` N ) e. NN0 ) -> ( A ^ ( phi ` N ) ) e. ZZ ) | 
						
							| 7 | 3 5 6 | syl2anc |  |-  ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( A ^ ( phi ` N ) ) e. ZZ ) | 
						
							| 8 |  | 1zzd |  |-  ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> 1 e. ZZ ) | 
						
							| 9 |  | moddvds |  |-  ( ( N e. NN /\ ( A ^ ( phi ` N ) ) e. ZZ /\ 1 e. ZZ ) -> ( ( ( A ^ ( phi ` N ) ) mod N ) = ( 1 mod N ) <-> N || ( ( A ^ ( phi ` N ) ) - 1 ) ) ) | 
						
							| 10 | 2 7 8 9 | syl3anc |  |-  ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( ( A ^ ( phi ` N ) ) mod N ) = ( 1 mod N ) <-> N || ( ( A ^ ( phi ` N ) ) - 1 ) ) ) | 
						
							| 11 | 1 10 | mpbid |  |-  ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> N || ( ( A ^ ( phi ` N ) ) - 1 ) ) | 
						
							| 12 |  | odzdvds |  |-  ( ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) /\ ( phi ` N ) e. NN0 ) -> ( N || ( ( A ^ ( phi ` N ) ) - 1 ) <-> ( ( odZ ` N ) ` A ) || ( phi ` N ) ) ) | 
						
							| 13 | 5 12 | mpdan |  |-  ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( N || ( ( A ^ ( phi ` N ) ) - 1 ) <-> ( ( odZ ` N ) ` A ) || ( phi ` N ) ) ) | 
						
							| 14 | 11 13 | mpbid |  |-  ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( odZ ` N ) ` A ) || ( phi ` N ) ) |