Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( m = N -> ( x gcd m ) = ( x gcd N ) ) |
2 |
1
|
eqeq1d |
|- ( m = N -> ( ( x gcd m ) = 1 <-> ( x gcd N ) = 1 ) ) |
3 |
2
|
rabbidv |
|- ( m = N -> { x e. ZZ | ( x gcd m ) = 1 } = { x e. ZZ | ( x gcd N ) = 1 } ) |
4 |
|
oveq1 |
|- ( n = x -> ( n gcd N ) = ( x gcd N ) ) |
5 |
4
|
eqeq1d |
|- ( n = x -> ( ( n gcd N ) = 1 <-> ( x gcd N ) = 1 ) ) |
6 |
5
|
cbvrabv |
|- { n e. ZZ | ( n gcd N ) = 1 } = { x e. ZZ | ( x gcd N ) = 1 } |
7 |
3 6
|
eqtr4di |
|- ( m = N -> { x e. ZZ | ( x gcd m ) = 1 } = { n e. ZZ | ( n gcd N ) = 1 } ) |
8 |
|
breq1 |
|- ( m = N -> ( m || ( ( x ^ n ) - 1 ) <-> N || ( ( x ^ n ) - 1 ) ) ) |
9 |
8
|
rabbidv |
|- ( m = N -> { n e. NN | m || ( ( x ^ n ) - 1 ) } = { n e. NN | N || ( ( x ^ n ) - 1 ) } ) |
10 |
9
|
infeq1d |
|- ( m = N -> inf ( { n e. NN | m || ( ( x ^ n ) - 1 ) } , RR , < ) = inf ( { n e. NN | N || ( ( x ^ n ) - 1 ) } , RR , < ) ) |
11 |
7 10
|
mpteq12dv |
|- ( m = N -> ( x e. { x e. ZZ | ( x gcd m ) = 1 } |-> inf ( { n e. NN | m || ( ( x ^ n ) - 1 ) } , RR , < ) ) = ( x e. { n e. ZZ | ( n gcd N ) = 1 } |-> inf ( { n e. NN | N || ( ( x ^ n ) - 1 ) } , RR , < ) ) ) |
12 |
|
df-odz |
|- odZ = ( m e. NN |-> ( x e. { x e. ZZ | ( x gcd m ) = 1 } |-> inf ( { n e. NN | m || ( ( x ^ n ) - 1 ) } , RR , < ) ) ) |
13 |
|
zex |
|- ZZ e. _V |
14 |
13
|
mptrabex |
|- ( x e. { n e. ZZ | ( n gcd N ) = 1 } |-> inf ( { n e. NN | N || ( ( x ^ n ) - 1 ) } , RR , < ) ) e. _V |
15 |
11 12 14
|
fvmpt |
|- ( N e. NN -> ( odZ ` N ) = ( x e. { n e. ZZ | ( n gcd N ) = 1 } |-> inf ( { n e. NN | N || ( ( x ^ n ) - 1 ) } , RR , < ) ) ) |
16 |
15
|
fveq1d |
|- ( N e. NN -> ( ( odZ ` N ) ` A ) = ( ( x e. { n e. ZZ | ( n gcd N ) = 1 } |-> inf ( { n e. NN | N || ( ( x ^ n ) - 1 ) } , RR , < ) ) ` A ) ) |
17 |
|
oveq1 |
|- ( n = A -> ( n gcd N ) = ( A gcd N ) ) |
18 |
17
|
eqeq1d |
|- ( n = A -> ( ( n gcd N ) = 1 <-> ( A gcd N ) = 1 ) ) |
19 |
18
|
elrab |
|- ( A e. { n e. ZZ | ( n gcd N ) = 1 } <-> ( A e. ZZ /\ ( A gcd N ) = 1 ) ) |
20 |
|
oveq1 |
|- ( x = A -> ( x ^ n ) = ( A ^ n ) ) |
21 |
20
|
oveq1d |
|- ( x = A -> ( ( x ^ n ) - 1 ) = ( ( A ^ n ) - 1 ) ) |
22 |
21
|
breq2d |
|- ( x = A -> ( N || ( ( x ^ n ) - 1 ) <-> N || ( ( A ^ n ) - 1 ) ) ) |
23 |
22
|
rabbidv |
|- ( x = A -> { n e. NN | N || ( ( x ^ n ) - 1 ) } = { n e. NN | N || ( ( A ^ n ) - 1 ) } ) |
24 |
23
|
infeq1d |
|- ( x = A -> inf ( { n e. NN | N || ( ( x ^ n ) - 1 ) } , RR , < ) = inf ( { n e. NN | N || ( ( A ^ n ) - 1 ) } , RR , < ) ) |
25 |
|
eqid |
|- ( x e. { n e. ZZ | ( n gcd N ) = 1 } |-> inf ( { n e. NN | N || ( ( x ^ n ) - 1 ) } , RR , < ) ) = ( x e. { n e. ZZ | ( n gcd N ) = 1 } |-> inf ( { n e. NN | N || ( ( x ^ n ) - 1 ) } , RR , < ) ) |
26 |
|
ltso |
|- < Or RR |
27 |
26
|
infex |
|- inf ( { n e. NN | N || ( ( A ^ n ) - 1 ) } , RR , < ) e. _V |
28 |
24 25 27
|
fvmpt |
|- ( A e. { n e. ZZ | ( n gcd N ) = 1 } -> ( ( x e. { n e. ZZ | ( n gcd N ) = 1 } |-> inf ( { n e. NN | N || ( ( x ^ n ) - 1 ) } , RR , < ) ) ` A ) = inf ( { n e. NN | N || ( ( A ^ n ) - 1 ) } , RR , < ) ) |
29 |
19 28
|
sylbir |
|- ( ( A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( x e. { n e. ZZ | ( n gcd N ) = 1 } |-> inf ( { n e. NN | N || ( ( x ^ n ) - 1 ) } , RR , < ) ) ` A ) = inf ( { n e. NN | N || ( ( A ^ n ) - 1 ) } , RR , < ) ) |
30 |
16 29
|
sylan9eq |
|- ( ( N e. NN /\ ( A e. ZZ /\ ( A gcd N ) = 1 ) ) -> ( ( odZ ` N ) ` A ) = inf ( { n e. NN | N || ( ( A ^ n ) - 1 ) } , RR , < ) ) |
31 |
30
|
3impb |
|- ( ( N e. NN /\ A e. ZZ /\ ( A gcd N ) = 1 ) -> ( ( odZ ` N ) ` A ) = inf ( { n e. NN | N || ( ( A ^ n ) - 1 ) } , RR , < ) ) |