| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|- ( A = (/) -> ( A ^o (/) ) = ( (/) ^o (/) ) ) |
| 2 |
|
oe0m0 |
|- ( (/) ^o (/) ) = 1o |
| 3 |
1 2
|
eqtrdi |
|- ( A = (/) -> ( A ^o (/) ) = 1o ) |
| 4 |
3
|
adantl |
|- ( ( A e. On /\ A = (/) ) -> ( A ^o (/) ) = 1o ) |
| 5 |
|
0elon |
|- (/) e. On |
| 6 |
|
oevn0 |
|- ( ( ( A e. On /\ (/) e. On ) /\ (/) e. A ) -> ( A ^o (/) ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` (/) ) ) |
| 7 |
5 6
|
mpanl2 |
|- ( ( A e. On /\ (/) e. A ) -> ( A ^o (/) ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` (/) ) ) |
| 8 |
|
1oex |
|- 1o e. _V |
| 9 |
8
|
rdg0 |
|- ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` (/) ) = 1o |
| 10 |
7 9
|
eqtrdi |
|- ( ( A e. On /\ (/) e. A ) -> ( A ^o (/) ) = 1o ) |
| 11 |
10
|
adantll |
|- ( ( ( A e. On /\ A e. On ) /\ (/) e. A ) -> ( A ^o (/) ) = 1o ) |
| 12 |
4 11
|
oe0lem |
|- ( ( A e. On /\ A e. On ) -> ( A ^o (/) ) = 1o ) |
| 13 |
12
|
anidms |
|- ( A e. On -> ( A ^o (/) ) = 1o ) |