Description: Value of zero raised to an ordinal. (Contributed by NM, 31-Dec-2004) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oe0m | |- ( A e. On -> ( (/) ^o A ) = ( 1o \ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon | |- (/) e. On |
|
| 2 | oev | |- ( ( (/) e. On /\ A e. On ) -> ( (/) ^o A ) = if ( (/) = (/) , ( 1o \ A ) , ( rec ( ( x e. _V |-> ( x .o (/) ) ) , 1o ) ` A ) ) ) |
|
| 3 | 1 2 | mpan | |- ( A e. On -> ( (/) ^o A ) = if ( (/) = (/) , ( 1o \ A ) , ( rec ( ( x e. _V |-> ( x .o (/) ) ) , 1o ) ` A ) ) ) |
| 4 | eqid | |- (/) = (/) |
|
| 5 | 4 | iftruei | |- if ( (/) = (/) , ( 1o \ A ) , ( rec ( ( x e. _V |-> ( x .o (/) ) ) , 1o ) ` A ) ) = ( 1o \ A ) |
| 6 | 3 5 | eqtrdi | |- ( A e. On -> ( (/) ^o A ) = ( 1o \ A ) ) |