Metamath Proof Explorer


Theorem oe0m0

Description: Ordinal exponentiation with zero base and zero exponent. Proposition 8.31 of TakeutiZaring p. 67. (Contributed by NM, 31-Dec-2004)

Ref Expression
Assertion oe0m0
|- ( (/) ^o (/) ) = 1o

Proof

Step Hyp Ref Expression
1 0elon
 |-  (/) e. On
2 oe0m
 |-  ( (/) e. On -> ( (/) ^o (/) ) = ( 1o \ (/) ) )
3 1 2 ax-mp
 |-  ( (/) ^o (/) ) = ( 1o \ (/) )
4 dif0
 |-  ( 1o \ (/) ) = 1o
5 3 4 eqtri
 |-  ( (/) ^o (/) ) = 1o