Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( x = (/) -> ( 1o ^o x ) = ( 1o ^o (/) ) ) |
2 |
1
|
eqeq1d |
|- ( x = (/) -> ( ( 1o ^o x ) = 1o <-> ( 1o ^o (/) ) = 1o ) ) |
3 |
|
oveq2 |
|- ( x = y -> ( 1o ^o x ) = ( 1o ^o y ) ) |
4 |
3
|
eqeq1d |
|- ( x = y -> ( ( 1o ^o x ) = 1o <-> ( 1o ^o y ) = 1o ) ) |
5 |
|
oveq2 |
|- ( x = suc y -> ( 1o ^o x ) = ( 1o ^o suc y ) ) |
6 |
5
|
eqeq1d |
|- ( x = suc y -> ( ( 1o ^o x ) = 1o <-> ( 1o ^o suc y ) = 1o ) ) |
7 |
|
oveq2 |
|- ( x = A -> ( 1o ^o x ) = ( 1o ^o A ) ) |
8 |
7
|
eqeq1d |
|- ( x = A -> ( ( 1o ^o x ) = 1o <-> ( 1o ^o A ) = 1o ) ) |
9 |
|
1on |
|- 1o e. On |
10 |
|
oe0 |
|- ( 1o e. On -> ( 1o ^o (/) ) = 1o ) |
11 |
9 10
|
ax-mp |
|- ( 1o ^o (/) ) = 1o |
12 |
|
oesuc |
|- ( ( 1o e. On /\ y e. On ) -> ( 1o ^o suc y ) = ( ( 1o ^o y ) .o 1o ) ) |
13 |
9 12
|
mpan |
|- ( y e. On -> ( 1o ^o suc y ) = ( ( 1o ^o y ) .o 1o ) ) |
14 |
|
oveq1 |
|- ( ( 1o ^o y ) = 1o -> ( ( 1o ^o y ) .o 1o ) = ( 1o .o 1o ) ) |
15 |
|
om1 |
|- ( 1o e. On -> ( 1o .o 1o ) = 1o ) |
16 |
9 15
|
ax-mp |
|- ( 1o .o 1o ) = 1o |
17 |
14 16
|
eqtrdi |
|- ( ( 1o ^o y ) = 1o -> ( ( 1o ^o y ) .o 1o ) = 1o ) |
18 |
13 17
|
sylan9eq |
|- ( ( y e. On /\ ( 1o ^o y ) = 1o ) -> ( 1o ^o suc y ) = 1o ) |
19 |
18
|
ex |
|- ( y e. On -> ( ( 1o ^o y ) = 1o -> ( 1o ^o suc y ) = 1o ) ) |
20 |
|
iuneq2 |
|- ( A. y e. x ( 1o ^o y ) = 1o -> U_ y e. x ( 1o ^o y ) = U_ y e. x 1o ) |
21 |
|
vex |
|- x e. _V |
22 |
|
0lt1o |
|- (/) e. 1o |
23 |
|
oelim |
|- ( ( ( 1o e. On /\ ( x e. _V /\ Lim x ) ) /\ (/) e. 1o ) -> ( 1o ^o x ) = U_ y e. x ( 1o ^o y ) ) |
24 |
22 23
|
mpan2 |
|- ( ( 1o e. On /\ ( x e. _V /\ Lim x ) ) -> ( 1o ^o x ) = U_ y e. x ( 1o ^o y ) ) |
25 |
9 24
|
mpan |
|- ( ( x e. _V /\ Lim x ) -> ( 1o ^o x ) = U_ y e. x ( 1o ^o y ) ) |
26 |
21 25
|
mpan |
|- ( Lim x -> ( 1o ^o x ) = U_ y e. x ( 1o ^o y ) ) |
27 |
26
|
eqeq1d |
|- ( Lim x -> ( ( 1o ^o x ) = 1o <-> U_ y e. x ( 1o ^o y ) = 1o ) ) |
28 |
|
0ellim |
|- ( Lim x -> (/) e. x ) |
29 |
|
ne0i |
|- ( (/) e. x -> x =/= (/) ) |
30 |
|
iunconst |
|- ( x =/= (/) -> U_ y e. x 1o = 1o ) |
31 |
28 29 30
|
3syl |
|- ( Lim x -> U_ y e. x 1o = 1o ) |
32 |
31
|
eqeq2d |
|- ( Lim x -> ( U_ y e. x ( 1o ^o y ) = U_ y e. x 1o <-> U_ y e. x ( 1o ^o y ) = 1o ) ) |
33 |
27 32
|
bitr4d |
|- ( Lim x -> ( ( 1o ^o x ) = 1o <-> U_ y e. x ( 1o ^o y ) = U_ y e. x 1o ) ) |
34 |
20 33
|
syl5ibr |
|- ( Lim x -> ( A. y e. x ( 1o ^o y ) = 1o -> ( 1o ^o x ) = 1o ) ) |
35 |
2 4 6 8 11 19 34
|
tfinds |
|- ( A e. On -> ( 1o ^o A ) = 1o ) |