| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( x = (/) -> ( 1o ^o x ) = ( 1o ^o (/) ) ) | 
						
							| 2 | 1 | eqeq1d |  |-  ( x = (/) -> ( ( 1o ^o x ) = 1o <-> ( 1o ^o (/) ) = 1o ) ) | 
						
							| 3 |  | oveq2 |  |-  ( x = y -> ( 1o ^o x ) = ( 1o ^o y ) ) | 
						
							| 4 | 3 | eqeq1d |  |-  ( x = y -> ( ( 1o ^o x ) = 1o <-> ( 1o ^o y ) = 1o ) ) | 
						
							| 5 |  | oveq2 |  |-  ( x = suc y -> ( 1o ^o x ) = ( 1o ^o suc y ) ) | 
						
							| 6 | 5 | eqeq1d |  |-  ( x = suc y -> ( ( 1o ^o x ) = 1o <-> ( 1o ^o suc y ) = 1o ) ) | 
						
							| 7 |  | oveq2 |  |-  ( x = A -> ( 1o ^o x ) = ( 1o ^o A ) ) | 
						
							| 8 | 7 | eqeq1d |  |-  ( x = A -> ( ( 1o ^o x ) = 1o <-> ( 1o ^o A ) = 1o ) ) | 
						
							| 9 |  | 1on |  |-  1o e. On | 
						
							| 10 |  | oe0 |  |-  ( 1o e. On -> ( 1o ^o (/) ) = 1o ) | 
						
							| 11 | 9 10 | ax-mp |  |-  ( 1o ^o (/) ) = 1o | 
						
							| 12 |  | oesuc |  |-  ( ( 1o e. On /\ y e. On ) -> ( 1o ^o suc y ) = ( ( 1o ^o y ) .o 1o ) ) | 
						
							| 13 | 9 12 | mpan |  |-  ( y e. On -> ( 1o ^o suc y ) = ( ( 1o ^o y ) .o 1o ) ) | 
						
							| 14 |  | oveq1 |  |-  ( ( 1o ^o y ) = 1o -> ( ( 1o ^o y ) .o 1o ) = ( 1o .o 1o ) ) | 
						
							| 15 |  | om1 |  |-  ( 1o e. On -> ( 1o .o 1o ) = 1o ) | 
						
							| 16 | 9 15 | ax-mp |  |-  ( 1o .o 1o ) = 1o | 
						
							| 17 | 14 16 | eqtrdi |  |-  ( ( 1o ^o y ) = 1o -> ( ( 1o ^o y ) .o 1o ) = 1o ) | 
						
							| 18 | 13 17 | sylan9eq |  |-  ( ( y e. On /\ ( 1o ^o y ) = 1o ) -> ( 1o ^o suc y ) = 1o ) | 
						
							| 19 | 18 | ex |  |-  ( y e. On -> ( ( 1o ^o y ) = 1o -> ( 1o ^o suc y ) = 1o ) ) | 
						
							| 20 |  | iuneq2 |  |-  ( A. y e. x ( 1o ^o y ) = 1o -> U_ y e. x ( 1o ^o y ) = U_ y e. x 1o ) | 
						
							| 21 |  | vex |  |-  x e. _V | 
						
							| 22 |  | 0lt1o |  |-  (/) e. 1o | 
						
							| 23 |  | oelim |  |-  ( ( ( 1o e. On /\ ( x e. _V /\ Lim x ) ) /\ (/) e. 1o ) -> ( 1o ^o x ) = U_ y e. x ( 1o ^o y ) ) | 
						
							| 24 | 22 23 | mpan2 |  |-  ( ( 1o e. On /\ ( x e. _V /\ Lim x ) ) -> ( 1o ^o x ) = U_ y e. x ( 1o ^o y ) ) | 
						
							| 25 | 9 24 | mpan |  |-  ( ( x e. _V /\ Lim x ) -> ( 1o ^o x ) = U_ y e. x ( 1o ^o y ) ) | 
						
							| 26 | 21 25 | mpan |  |-  ( Lim x -> ( 1o ^o x ) = U_ y e. x ( 1o ^o y ) ) | 
						
							| 27 | 26 | eqeq1d |  |-  ( Lim x -> ( ( 1o ^o x ) = 1o <-> U_ y e. x ( 1o ^o y ) = 1o ) ) | 
						
							| 28 |  | 0ellim |  |-  ( Lim x -> (/) e. x ) | 
						
							| 29 |  | ne0i |  |-  ( (/) e. x -> x =/= (/) ) | 
						
							| 30 |  | iunconst |  |-  ( x =/= (/) -> U_ y e. x 1o = 1o ) | 
						
							| 31 | 28 29 30 | 3syl |  |-  ( Lim x -> U_ y e. x 1o = 1o ) | 
						
							| 32 | 31 | eqeq2d |  |-  ( Lim x -> ( U_ y e. x ( 1o ^o y ) = U_ y e. x 1o <-> U_ y e. x ( 1o ^o y ) = 1o ) ) | 
						
							| 33 | 27 32 | bitr4d |  |-  ( Lim x -> ( ( 1o ^o x ) = 1o <-> U_ y e. x ( 1o ^o y ) = U_ y e. x 1o ) ) | 
						
							| 34 | 20 33 | imbitrrid |  |-  ( Lim x -> ( A. y e. x ( 1o ^o y ) = 1o -> ( 1o ^o x ) = 1o ) ) | 
						
							| 35 | 2 4 6 8 11 19 34 | tfinds |  |-  ( A e. On -> ( 1o ^o A ) = 1o ) |