| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oeordi |  |-  ( ( C e. On /\ A e. ( On \ 2o ) ) -> ( B e. C -> ( A ^o B ) e. ( A ^o C ) ) ) | 
						
							| 2 | 1 | ancoms |  |-  ( ( A e. ( On \ 2o ) /\ C e. On ) -> ( B e. C -> ( A ^o B ) e. ( A ^o C ) ) ) | 
						
							| 3 | 2 | 3adant2 |  |-  ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( B e. C -> ( A ^o B ) e. ( A ^o C ) ) ) | 
						
							| 4 |  | oeordi |  |-  ( ( B e. On /\ A e. ( On \ 2o ) ) -> ( C e. B -> ( A ^o C ) e. ( A ^o B ) ) ) | 
						
							| 5 | 4 | ancoms |  |-  ( ( A e. ( On \ 2o ) /\ B e. On ) -> ( C e. B -> ( A ^o C ) e. ( A ^o B ) ) ) | 
						
							| 6 | 5 | 3adant3 |  |-  ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( C e. B -> ( A ^o C ) e. ( A ^o B ) ) ) | 
						
							| 7 | 3 6 | orim12d |  |-  ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( ( B e. C \/ C e. B ) -> ( ( A ^o B ) e. ( A ^o C ) \/ ( A ^o C ) e. ( A ^o B ) ) ) ) | 
						
							| 8 | 7 | con3d |  |-  ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( -. ( ( A ^o B ) e. ( A ^o C ) \/ ( A ^o C ) e. ( A ^o B ) ) -> -. ( B e. C \/ C e. B ) ) ) | 
						
							| 9 |  | eldifi |  |-  ( A e. ( On \ 2o ) -> A e. On ) | 
						
							| 10 | 9 | 3ad2ant1 |  |-  ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> A e. On ) | 
						
							| 11 |  | simp2 |  |-  ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> B e. On ) | 
						
							| 12 |  | oecl |  |-  ( ( A e. On /\ B e. On ) -> ( A ^o B ) e. On ) | 
						
							| 13 | 10 11 12 | syl2anc |  |-  ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( A ^o B ) e. On ) | 
						
							| 14 |  | simp3 |  |-  ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> C e. On ) | 
						
							| 15 |  | oecl |  |-  ( ( A e. On /\ C e. On ) -> ( A ^o C ) e. On ) | 
						
							| 16 | 10 14 15 | syl2anc |  |-  ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( A ^o C ) e. On ) | 
						
							| 17 |  | eloni |  |-  ( ( A ^o B ) e. On -> Ord ( A ^o B ) ) | 
						
							| 18 |  | eloni |  |-  ( ( A ^o C ) e. On -> Ord ( A ^o C ) ) | 
						
							| 19 |  | ordtri3 |  |-  ( ( Ord ( A ^o B ) /\ Ord ( A ^o C ) ) -> ( ( A ^o B ) = ( A ^o C ) <-> -. ( ( A ^o B ) e. ( A ^o C ) \/ ( A ^o C ) e. ( A ^o B ) ) ) ) | 
						
							| 20 | 17 18 19 | syl2an |  |-  ( ( ( A ^o B ) e. On /\ ( A ^o C ) e. On ) -> ( ( A ^o B ) = ( A ^o C ) <-> -. ( ( A ^o B ) e. ( A ^o C ) \/ ( A ^o C ) e. ( A ^o B ) ) ) ) | 
						
							| 21 | 13 16 20 | syl2anc |  |-  ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( ( A ^o B ) = ( A ^o C ) <-> -. ( ( A ^o B ) e. ( A ^o C ) \/ ( A ^o C ) e. ( A ^o B ) ) ) ) | 
						
							| 22 |  | eloni |  |-  ( B e. On -> Ord B ) | 
						
							| 23 |  | eloni |  |-  ( C e. On -> Ord C ) | 
						
							| 24 |  | ordtri3 |  |-  ( ( Ord B /\ Ord C ) -> ( B = C <-> -. ( B e. C \/ C e. B ) ) ) | 
						
							| 25 | 22 23 24 | syl2an |  |-  ( ( B e. On /\ C e. On ) -> ( B = C <-> -. ( B e. C \/ C e. B ) ) ) | 
						
							| 26 | 25 | 3adant1 |  |-  ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( B = C <-> -. ( B e. C \/ C e. B ) ) ) | 
						
							| 27 | 8 21 26 | 3imtr4d |  |-  ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( ( A ^o B ) = ( A ^o C ) -> B = C ) ) | 
						
							| 28 |  | oveq2 |  |-  ( B = C -> ( A ^o B ) = ( A ^o C ) ) | 
						
							| 29 | 27 28 | impbid1 |  |-  ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( ( A ^o B ) = ( A ^o C ) <-> B = C ) ) |