Step |
Hyp |
Ref |
Expression |
1 |
|
oeordi |
|- ( ( C e. On /\ A e. ( On \ 2o ) ) -> ( B e. C -> ( A ^o B ) e. ( A ^o C ) ) ) |
2 |
1
|
ancoms |
|- ( ( A e. ( On \ 2o ) /\ C e. On ) -> ( B e. C -> ( A ^o B ) e. ( A ^o C ) ) ) |
3 |
2
|
3adant2 |
|- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( B e. C -> ( A ^o B ) e. ( A ^o C ) ) ) |
4 |
|
oeordi |
|- ( ( B e. On /\ A e. ( On \ 2o ) ) -> ( C e. B -> ( A ^o C ) e. ( A ^o B ) ) ) |
5 |
4
|
ancoms |
|- ( ( A e. ( On \ 2o ) /\ B e. On ) -> ( C e. B -> ( A ^o C ) e. ( A ^o B ) ) ) |
6 |
5
|
3adant3 |
|- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( C e. B -> ( A ^o C ) e. ( A ^o B ) ) ) |
7 |
3 6
|
orim12d |
|- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( ( B e. C \/ C e. B ) -> ( ( A ^o B ) e. ( A ^o C ) \/ ( A ^o C ) e. ( A ^o B ) ) ) ) |
8 |
7
|
con3d |
|- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( -. ( ( A ^o B ) e. ( A ^o C ) \/ ( A ^o C ) e. ( A ^o B ) ) -> -. ( B e. C \/ C e. B ) ) ) |
9 |
|
eldifi |
|- ( A e. ( On \ 2o ) -> A e. On ) |
10 |
9
|
3ad2ant1 |
|- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> A e. On ) |
11 |
|
simp2 |
|- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> B e. On ) |
12 |
|
oecl |
|- ( ( A e. On /\ B e. On ) -> ( A ^o B ) e. On ) |
13 |
10 11 12
|
syl2anc |
|- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( A ^o B ) e. On ) |
14 |
|
simp3 |
|- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> C e. On ) |
15 |
|
oecl |
|- ( ( A e. On /\ C e. On ) -> ( A ^o C ) e. On ) |
16 |
10 14 15
|
syl2anc |
|- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( A ^o C ) e. On ) |
17 |
|
eloni |
|- ( ( A ^o B ) e. On -> Ord ( A ^o B ) ) |
18 |
|
eloni |
|- ( ( A ^o C ) e. On -> Ord ( A ^o C ) ) |
19 |
|
ordtri3 |
|- ( ( Ord ( A ^o B ) /\ Ord ( A ^o C ) ) -> ( ( A ^o B ) = ( A ^o C ) <-> -. ( ( A ^o B ) e. ( A ^o C ) \/ ( A ^o C ) e. ( A ^o B ) ) ) ) |
20 |
17 18 19
|
syl2an |
|- ( ( ( A ^o B ) e. On /\ ( A ^o C ) e. On ) -> ( ( A ^o B ) = ( A ^o C ) <-> -. ( ( A ^o B ) e. ( A ^o C ) \/ ( A ^o C ) e. ( A ^o B ) ) ) ) |
21 |
13 16 20
|
syl2anc |
|- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( ( A ^o B ) = ( A ^o C ) <-> -. ( ( A ^o B ) e. ( A ^o C ) \/ ( A ^o C ) e. ( A ^o B ) ) ) ) |
22 |
|
eloni |
|- ( B e. On -> Ord B ) |
23 |
|
eloni |
|- ( C e. On -> Ord C ) |
24 |
|
ordtri3 |
|- ( ( Ord B /\ Ord C ) -> ( B = C <-> -. ( B e. C \/ C e. B ) ) ) |
25 |
22 23 24
|
syl2an |
|- ( ( B e. On /\ C e. On ) -> ( B = C <-> -. ( B e. C \/ C e. B ) ) ) |
26 |
25
|
3adant1 |
|- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( B = C <-> -. ( B e. C \/ C e. B ) ) ) |
27 |
8 21 26
|
3imtr4d |
|- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( ( A ^o B ) = ( A ^o C ) -> B = C ) ) |
28 |
|
oveq2 |
|- ( B = C -> ( A ^o B ) = ( A ^o C ) ) |
29 |
27 28
|
impbid1 |
|- ( ( A e. ( On \ 2o ) /\ B e. On /\ C e. On ) -> ( ( A ^o B ) = ( A ^o C ) <-> B = C ) ) |