Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( B = (/) -> ( (/) ^o B ) = ( (/) ^o (/) ) ) |
2 |
|
oe0m0 |
|- ( (/) ^o (/) ) = 1o |
3 |
|
1on |
|- 1o e. On |
4 |
2 3
|
eqeltri |
|- ( (/) ^o (/) ) e. On |
5 |
1 4
|
eqeltrdi |
|- ( B = (/) -> ( (/) ^o B ) e. On ) |
6 |
5
|
adantl |
|- ( ( B e. On /\ B = (/) ) -> ( (/) ^o B ) e. On ) |
7 |
|
oe0m1 |
|- ( B e. On -> ( (/) e. B <-> ( (/) ^o B ) = (/) ) ) |
8 |
7
|
biimpa |
|- ( ( B e. On /\ (/) e. B ) -> ( (/) ^o B ) = (/) ) |
9 |
|
0elon |
|- (/) e. On |
10 |
8 9
|
eqeltrdi |
|- ( ( B e. On /\ (/) e. B ) -> ( (/) ^o B ) e. On ) |
11 |
10
|
adantll |
|- ( ( ( B e. On /\ B e. On ) /\ (/) e. B ) -> ( (/) ^o B ) e. On ) |
12 |
6 11
|
oe0lem |
|- ( ( B e. On /\ B e. On ) -> ( (/) ^o B ) e. On ) |
13 |
12
|
anidms |
|- ( B e. On -> ( (/) ^o B ) e. On ) |
14 |
|
oveq1 |
|- ( A = (/) -> ( A ^o B ) = ( (/) ^o B ) ) |
15 |
14
|
eleq1d |
|- ( A = (/) -> ( ( A ^o B ) e. On <-> ( (/) ^o B ) e. On ) ) |
16 |
13 15
|
syl5ibr |
|- ( A = (/) -> ( B e. On -> ( A ^o B ) e. On ) ) |
17 |
16
|
impcom |
|- ( ( B e. On /\ A = (/) ) -> ( A ^o B ) e. On ) |
18 |
|
oveq2 |
|- ( x = (/) -> ( A ^o x ) = ( A ^o (/) ) ) |
19 |
18
|
eleq1d |
|- ( x = (/) -> ( ( A ^o x ) e. On <-> ( A ^o (/) ) e. On ) ) |
20 |
|
oveq2 |
|- ( x = y -> ( A ^o x ) = ( A ^o y ) ) |
21 |
20
|
eleq1d |
|- ( x = y -> ( ( A ^o x ) e. On <-> ( A ^o y ) e. On ) ) |
22 |
|
oveq2 |
|- ( x = suc y -> ( A ^o x ) = ( A ^o suc y ) ) |
23 |
22
|
eleq1d |
|- ( x = suc y -> ( ( A ^o x ) e. On <-> ( A ^o suc y ) e. On ) ) |
24 |
|
oveq2 |
|- ( x = B -> ( A ^o x ) = ( A ^o B ) ) |
25 |
24
|
eleq1d |
|- ( x = B -> ( ( A ^o x ) e. On <-> ( A ^o B ) e. On ) ) |
26 |
|
oe0 |
|- ( A e. On -> ( A ^o (/) ) = 1o ) |
27 |
26 3
|
eqeltrdi |
|- ( A e. On -> ( A ^o (/) ) e. On ) |
28 |
27
|
adantr |
|- ( ( A e. On /\ (/) e. A ) -> ( A ^o (/) ) e. On ) |
29 |
|
omcl |
|- ( ( ( A ^o y ) e. On /\ A e. On ) -> ( ( A ^o y ) .o A ) e. On ) |
30 |
29
|
expcom |
|- ( A e. On -> ( ( A ^o y ) e. On -> ( ( A ^o y ) .o A ) e. On ) ) |
31 |
30
|
adantr |
|- ( ( A e. On /\ y e. On ) -> ( ( A ^o y ) e. On -> ( ( A ^o y ) .o A ) e. On ) ) |
32 |
|
oesuc |
|- ( ( A e. On /\ y e. On ) -> ( A ^o suc y ) = ( ( A ^o y ) .o A ) ) |
33 |
32
|
eleq1d |
|- ( ( A e. On /\ y e. On ) -> ( ( A ^o suc y ) e. On <-> ( ( A ^o y ) .o A ) e. On ) ) |
34 |
31 33
|
sylibrd |
|- ( ( A e. On /\ y e. On ) -> ( ( A ^o y ) e. On -> ( A ^o suc y ) e. On ) ) |
35 |
34
|
expcom |
|- ( y e. On -> ( A e. On -> ( ( A ^o y ) e. On -> ( A ^o suc y ) e. On ) ) ) |
36 |
35
|
adantrd |
|- ( y e. On -> ( ( A e. On /\ (/) e. A ) -> ( ( A ^o y ) e. On -> ( A ^o suc y ) e. On ) ) ) |
37 |
|
vex |
|- x e. _V |
38 |
|
iunon |
|- ( ( x e. _V /\ A. y e. x ( A ^o y ) e. On ) -> U_ y e. x ( A ^o y ) e. On ) |
39 |
37 38
|
mpan |
|- ( A. y e. x ( A ^o y ) e. On -> U_ y e. x ( A ^o y ) e. On ) |
40 |
|
oelim |
|- ( ( ( A e. On /\ ( x e. _V /\ Lim x ) ) /\ (/) e. A ) -> ( A ^o x ) = U_ y e. x ( A ^o y ) ) |
41 |
37 40
|
mpanlr1 |
|- ( ( ( A e. On /\ Lim x ) /\ (/) e. A ) -> ( A ^o x ) = U_ y e. x ( A ^o y ) ) |
42 |
41
|
anasss |
|- ( ( A e. On /\ ( Lim x /\ (/) e. A ) ) -> ( A ^o x ) = U_ y e. x ( A ^o y ) ) |
43 |
42
|
an12s |
|- ( ( Lim x /\ ( A e. On /\ (/) e. A ) ) -> ( A ^o x ) = U_ y e. x ( A ^o y ) ) |
44 |
43
|
eleq1d |
|- ( ( Lim x /\ ( A e. On /\ (/) e. A ) ) -> ( ( A ^o x ) e. On <-> U_ y e. x ( A ^o y ) e. On ) ) |
45 |
39 44
|
syl5ibr |
|- ( ( Lim x /\ ( A e. On /\ (/) e. A ) ) -> ( A. y e. x ( A ^o y ) e. On -> ( A ^o x ) e. On ) ) |
46 |
45
|
ex |
|- ( Lim x -> ( ( A e. On /\ (/) e. A ) -> ( A. y e. x ( A ^o y ) e. On -> ( A ^o x ) e. On ) ) ) |
47 |
19 21 23 25 28 36 46
|
tfinds3 |
|- ( B e. On -> ( ( A e. On /\ (/) e. A ) -> ( A ^o B ) e. On ) ) |
48 |
47
|
expd |
|- ( B e. On -> ( A e. On -> ( (/) e. A -> ( A ^o B ) e. On ) ) ) |
49 |
48
|
com12 |
|- ( A e. On -> ( B e. On -> ( (/) e. A -> ( A ^o B ) e. On ) ) ) |
50 |
49
|
imp31 |
|- ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> ( A ^o B ) e. On ) |
51 |
17 50
|
oe0lem |
|- ( ( A e. On /\ B e. On ) -> ( A ^o B ) e. On ) |