| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( B = (/) -> ( (/) ^o B ) = ( (/) ^o (/) ) ) |
| 2 |
|
oe0m0 |
|- ( (/) ^o (/) ) = 1o |
| 3 |
|
1on |
|- 1o e. On |
| 4 |
2 3
|
eqeltri |
|- ( (/) ^o (/) ) e. On |
| 5 |
1 4
|
eqeltrdi |
|- ( B = (/) -> ( (/) ^o B ) e. On ) |
| 6 |
5
|
adantl |
|- ( ( B e. On /\ B = (/) ) -> ( (/) ^o B ) e. On ) |
| 7 |
|
oe0m1 |
|- ( B e. On -> ( (/) e. B <-> ( (/) ^o B ) = (/) ) ) |
| 8 |
7
|
biimpa |
|- ( ( B e. On /\ (/) e. B ) -> ( (/) ^o B ) = (/) ) |
| 9 |
|
0elon |
|- (/) e. On |
| 10 |
8 9
|
eqeltrdi |
|- ( ( B e. On /\ (/) e. B ) -> ( (/) ^o B ) e. On ) |
| 11 |
10
|
adantll |
|- ( ( ( B e. On /\ B e. On ) /\ (/) e. B ) -> ( (/) ^o B ) e. On ) |
| 12 |
6 11
|
oe0lem |
|- ( ( B e. On /\ B e. On ) -> ( (/) ^o B ) e. On ) |
| 13 |
12
|
anidms |
|- ( B e. On -> ( (/) ^o B ) e. On ) |
| 14 |
|
oveq1 |
|- ( A = (/) -> ( A ^o B ) = ( (/) ^o B ) ) |
| 15 |
14
|
eleq1d |
|- ( A = (/) -> ( ( A ^o B ) e. On <-> ( (/) ^o B ) e. On ) ) |
| 16 |
13 15
|
imbitrrid |
|- ( A = (/) -> ( B e. On -> ( A ^o B ) e. On ) ) |
| 17 |
16
|
impcom |
|- ( ( B e. On /\ A = (/) ) -> ( A ^o B ) e. On ) |
| 18 |
|
oveq2 |
|- ( x = (/) -> ( A ^o x ) = ( A ^o (/) ) ) |
| 19 |
18
|
eleq1d |
|- ( x = (/) -> ( ( A ^o x ) e. On <-> ( A ^o (/) ) e. On ) ) |
| 20 |
|
oveq2 |
|- ( x = y -> ( A ^o x ) = ( A ^o y ) ) |
| 21 |
20
|
eleq1d |
|- ( x = y -> ( ( A ^o x ) e. On <-> ( A ^o y ) e. On ) ) |
| 22 |
|
oveq2 |
|- ( x = suc y -> ( A ^o x ) = ( A ^o suc y ) ) |
| 23 |
22
|
eleq1d |
|- ( x = suc y -> ( ( A ^o x ) e. On <-> ( A ^o suc y ) e. On ) ) |
| 24 |
|
oveq2 |
|- ( x = B -> ( A ^o x ) = ( A ^o B ) ) |
| 25 |
24
|
eleq1d |
|- ( x = B -> ( ( A ^o x ) e. On <-> ( A ^o B ) e. On ) ) |
| 26 |
|
oe0 |
|- ( A e. On -> ( A ^o (/) ) = 1o ) |
| 27 |
26 3
|
eqeltrdi |
|- ( A e. On -> ( A ^o (/) ) e. On ) |
| 28 |
27
|
adantr |
|- ( ( A e. On /\ (/) e. A ) -> ( A ^o (/) ) e. On ) |
| 29 |
|
omcl |
|- ( ( ( A ^o y ) e. On /\ A e. On ) -> ( ( A ^o y ) .o A ) e. On ) |
| 30 |
29
|
expcom |
|- ( A e. On -> ( ( A ^o y ) e. On -> ( ( A ^o y ) .o A ) e. On ) ) |
| 31 |
30
|
adantr |
|- ( ( A e. On /\ y e. On ) -> ( ( A ^o y ) e. On -> ( ( A ^o y ) .o A ) e. On ) ) |
| 32 |
|
oesuc |
|- ( ( A e. On /\ y e. On ) -> ( A ^o suc y ) = ( ( A ^o y ) .o A ) ) |
| 33 |
32
|
eleq1d |
|- ( ( A e. On /\ y e. On ) -> ( ( A ^o suc y ) e. On <-> ( ( A ^o y ) .o A ) e. On ) ) |
| 34 |
31 33
|
sylibrd |
|- ( ( A e. On /\ y e. On ) -> ( ( A ^o y ) e. On -> ( A ^o suc y ) e. On ) ) |
| 35 |
34
|
expcom |
|- ( y e. On -> ( A e. On -> ( ( A ^o y ) e. On -> ( A ^o suc y ) e. On ) ) ) |
| 36 |
35
|
adantrd |
|- ( y e. On -> ( ( A e. On /\ (/) e. A ) -> ( ( A ^o y ) e. On -> ( A ^o suc y ) e. On ) ) ) |
| 37 |
|
vex |
|- x e. _V |
| 38 |
|
iunon |
|- ( ( x e. _V /\ A. y e. x ( A ^o y ) e. On ) -> U_ y e. x ( A ^o y ) e. On ) |
| 39 |
37 38
|
mpan |
|- ( A. y e. x ( A ^o y ) e. On -> U_ y e. x ( A ^o y ) e. On ) |
| 40 |
|
oelim |
|- ( ( ( A e. On /\ ( x e. _V /\ Lim x ) ) /\ (/) e. A ) -> ( A ^o x ) = U_ y e. x ( A ^o y ) ) |
| 41 |
37 40
|
mpanlr1 |
|- ( ( ( A e. On /\ Lim x ) /\ (/) e. A ) -> ( A ^o x ) = U_ y e. x ( A ^o y ) ) |
| 42 |
41
|
anasss |
|- ( ( A e. On /\ ( Lim x /\ (/) e. A ) ) -> ( A ^o x ) = U_ y e. x ( A ^o y ) ) |
| 43 |
42
|
an12s |
|- ( ( Lim x /\ ( A e. On /\ (/) e. A ) ) -> ( A ^o x ) = U_ y e. x ( A ^o y ) ) |
| 44 |
43
|
eleq1d |
|- ( ( Lim x /\ ( A e. On /\ (/) e. A ) ) -> ( ( A ^o x ) e. On <-> U_ y e. x ( A ^o y ) e. On ) ) |
| 45 |
39 44
|
imbitrrid |
|- ( ( Lim x /\ ( A e. On /\ (/) e. A ) ) -> ( A. y e. x ( A ^o y ) e. On -> ( A ^o x ) e. On ) ) |
| 46 |
45
|
ex |
|- ( Lim x -> ( ( A e. On /\ (/) e. A ) -> ( A. y e. x ( A ^o y ) e. On -> ( A ^o x ) e. On ) ) ) |
| 47 |
19 21 23 25 28 36 46
|
tfinds3 |
|- ( B e. On -> ( ( A e. On /\ (/) e. A ) -> ( A ^o B ) e. On ) ) |
| 48 |
47
|
expd |
|- ( B e. On -> ( A e. On -> ( (/) e. A -> ( A ^o B ) e. On ) ) ) |
| 49 |
48
|
com12 |
|- ( A e. On -> ( B e. On -> ( (/) e. A -> ( A ^o B ) e. On ) ) ) |
| 50 |
49
|
imp31 |
|- ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> ( A ^o B ) e. On ) |
| 51 |
17 50
|
oe0lem |
|- ( ( A e. On /\ B e. On ) -> ( A ^o B ) e. On ) |