| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cantnfs.s |  |-  S = dom ( A CNF B ) | 
						
							| 2 |  | cantnfs.a |  |-  ( ph -> A e. On ) | 
						
							| 3 |  | cantnfs.b |  |-  ( ph -> B e. On ) | 
						
							| 4 |  | oemapval.t |  |-  T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } | 
						
							| 5 |  | eloni |  |-  ( B e. On -> Ord B ) | 
						
							| 6 |  | ordwe |  |-  ( Ord B -> _E We B ) | 
						
							| 7 |  | weso |  |-  ( _E We B -> _E Or B ) | 
						
							| 8 | 3 5 6 7 | 4syl |  |-  ( ph -> _E Or B ) | 
						
							| 9 |  | cnvso |  |-  ( _E Or B <-> `' _E Or B ) | 
						
							| 10 | 8 9 | sylib |  |-  ( ph -> `' _E Or B ) | 
						
							| 11 |  | eloni |  |-  ( A e. On -> Ord A ) | 
						
							| 12 |  | ordwe |  |-  ( Ord A -> _E We A ) | 
						
							| 13 |  | weso |  |-  ( _E We A -> _E Or A ) | 
						
							| 14 | 2 11 12 13 | 4syl |  |-  ( ph -> _E Or A ) | 
						
							| 15 |  | fvex |  |-  ( y ` z ) e. _V | 
						
							| 16 | 15 | epeli |  |-  ( ( x ` z ) _E ( y ` z ) <-> ( x ` z ) e. ( y ` z ) ) | 
						
							| 17 |  | vex |  |-  w e. _V | 
						
							| 18 |  | vex |  |-  z e. _V | 
						
							| 19 | 17 18 | brcnv |  |-  ( w `' _E z <-> z _E w ) | 
						
							| 20 |  | epel |  |-  ( z _E w <-> z e. w ) | 
						
							| 21 | 19 20 | bitri |  |-  ( w `' _E z <-> z e. w ) | 
						
							| 22 | 21 | imbi1i |  |-  ( ( w `' _E z -> ( x ` w ) = ( y ` w ) ) <-> ( z e. w -> ( x ` w ) = ( y ` w ) ) ) | 
						
							| 23 | 22 | ralbii |  |-  ( A. w e. B ( w `' _E z -> ( x ` w ) = ( y ` w ) ) <-> A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) | 
						
							| 24 | 16 23 | anbi12i |  |-  ( ( ( x ` z ) _E ( y ` z ) /\ A. w e. B ( w `' _E z -> ( x ` w ) = ( y ` w ) ) ) <-> ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) ) | 
						
							| 25 | 24 | rexbii |  |-  ( E. z e. B ( ( x ` z ) _E ( y ` z ) /\ A. w e. B ( w `' _E z -> ( x ` w ) = ( y ` w ) ) ) <-> E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) ) | 
						
							| 26 | 25 | opabbii |  |-  { <. x , y >. | E. z e. B ( ( x ` z ) _E ( y ` z ) /\ A. w e. B ( w `' _E z -> ( x ` w ) = ( y ` w ) ) ) } = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } | 
						
							| 27 | 4 26 | eqtr4i |  |-  T = { <. x , y >. | E. z e. B ( ( x ` z ) _E ( y ` z ) /\ A. w e. B ( w `' _E z -> ( x ` w ) = ( y ` w ) ) ) } | 
						
							| 28 |  | breq1 |  |-  ( g = x -> ( g finSupp (/) <-> x finSupp (/) ) ) | 
						
							| 29 | 28 | cbvrabv |  |-  { g e. ( A ^m B ) | g finSupp (/) } = { x e. ( A ^m B ) | x finSupp (/) } | 
						
							| 30 | 27 29 | wemapso2 |  |-  ( ( B e. On /\ `' _E Or B /\ _E Or A ) -> T Or { g e. ( A ^m B ) | g finSupp (/) } ) | 
						
							| 31 | 3 10 14 30 | syl3anc |  |-  ( ph -> T Or { g e. ( A ^m B ) | g finSupp (/) } ) | 
						
							| 32 |  | eqid |  |-  { g e. ( A ^m B ) | g finSupp (/) } = { g e. ( A ^m B ) | g finSupp (/) } | 
						
							| 33 | 32 2 3 | cantnfdm |  |-  ( ph -> dom ( A CNF B ) = { g e. ( A ^m B ) | g finSupp (/) } ) | 
						
							| 34 | 1 33 | eqtrid |  |-  ( ph -> S = { g e. ( A ^m B ) | g finSupp (/) } ) | 
						
							| 35 |  | soeq2 |  |-  ( S = { g e. ( A ^m B ) | g finSupp (/) } -> ( T Or S <-> T Or { g e. ( A ^m B ) | g finSupp (/) } ) ) | 
						
							| 36 | 34 35 | syl |  |-  ( ph -> ( T Or S <-> T Or { g e. ( A ^m B ) | g finSupp (/) } ) ) | 
						
							| 37 | 31 36 | mpbird |  |-  ( ph -> T Or S ) |