| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfs.s |
|- S = dom ( A CNF B ) |
| 2 |
|
cantnfs.a |
|- ( ph -> A e. On ) |
| 3 |
|
cantnfs.b |
|- ( ph -> B e. On ) |
| 4 |
|
oemapval.t |
|- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
| 5 |
|
oemapval.f |
|- ( ph -> F e. S ) |
| 6 |
|
oemapval.g |
|- ( ph -> G e. S ) |
| 7 |
|
fveq1 |
|- ( x = F -> ( x ` z ) = ( F ` z ) ) |
| 8 |
|
fveq1 |
|- ( y = G -> ( y ` z ) = ( G ` z ) ) |
| 9 |
|
eleq12 |
|- ( ( ( x ` z ) = ( F ` z ) /\ ( y ` z ) = ( G ` z ) ) -> ( ( x ` z ) e. ( y ` z ) <-> ( F ` z ) e. ( G ` z ) ) ) |
| 10 |
7 8 9
|
syl2an |
|- ( ( x = F /\ y = G ) -> ( ( x ` z ) e. ( y ` z ) <-> ( F ` z ) e. ( G ` z ) ) ) |
| 11 |
|
fveq1 |
|- ( x = F -> ( x ` w ) = ( F ` w ) ) |
| 12 |
|
fveq1 |
|- ( y = G -> ( y ` w ) = ( G ` w ) ) |
| 13 |
11 12
|
eqeqan12d |
|- ( ( x = F /\ y = G ) -> ( ( x ` w ) = ( y ` w ) <-> ( F ` w ) = ( G ` w ) ) ) |
| 14 |
13
|
imbi2d |
|- ( ( x = F /\ y = G ) -> ( ( z e. w -> ( x ` w ) = ( y ` w ) ) <-> ( z e. w -> ( F ` w ) = ( G ` w ) ) ) ) |
| 15 |
14
|
ralbidv |
|- ( ( x = F /\ y = G ) -> ( A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) <-> A. w e. B ( z e. w -> ( F ` w ) = ( G ` w ) ) ) ) |
| 16 |
10 15
|
anbi12d |
|- ( ( x = F /\ y = G ) -> ( ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) <-> ( ( F ` z ) e. ( G ` z ) /\ A. w e. B ( z e. w -> ( F ` w ) = ( G ` w ) ) ) ) ) |
| 17 |
16
|
rexbidv |
|- ( ( x = F /\ y = G ) -> ( E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) <-> E. z e. B ( ( F ` z ) e. ( G ` z ) /\ A. w e. B ( z e. w -> ( F ` w ) = ( G ` w ) ) ) ) ) |
| 18 |
17 4
|
brabga |
|- ( ( F e. S /\ G e. S ) -> ( F T G <-> E. z e. B ( ( F ` z ) e. ( G ` z ) /\ A. w e. B ( z e. w -> ( F ` w ) = ( G ` w ) ) ) ) ) |
| 19 |
5 6 18
|
syl2anc |
|- ( ph -> ( F T G <-> E. z e. B ( ( F ` z ) e. ( G ` z ) /\ A. w e. B ( z e. w -> ( F ` w ) = ( G ` w ) ) ) ) ) |