| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oa00 |  |-  ( ( B e. On /\ C e. On ) -> ( ( B +o C ) = (/) <-> ( B = (/) /\ C = (/) ) ) ) | 
						
							| 2 | 1 | biimpar |  |-  ( ( ( B e. On /\ C e. On ) /\ ( B = (/) /\ C = (/) ) ) -> ( B +o C ) = (/) ) | 
						
							| 3 | 2 | oveq2d |  |-  ( ( ( B e. On /\ C e. On ) /\ ( B = (/) /\ C = (/) ) ) -> ( (/) ^o ( B +o C ) ) = ( (/) ^o (/) ) ) | 
						
							| 4 |  | oveq2 |  |-  ( B = (/) -> ( (/) ^o B ) = ( (/) ^o (/) ) ) | 
						
							| 5 |  | oveq2 |  |-  ( C = (/) -> ( (/) ^o C ) = ( (/) ^o (/) ) ) | 
						
							| 6 |  | oe0m0 |  |-  ( (/) ^o (/) ) = 1o | 
						
							| 7 | 5 6 | eqtrdi |  |-  ( C = (/) -> ( (/) ^o C ) = 1o ) | 
						
							| 8 | 4 7 | oveqan12d |  |-  ( ( B = (/) /\ C = (/) ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = ( ( (/) ^o (/) ) .o 1o ) ) | 
						
							| 9 |  | 0elon |  |-  (/) e. On | 
						
							| 10 |  | oecl |  |-  ( ( (/) e. On /\ (/) e. On ) -> ( (/) ^o (/) ) e. On ) | 
						
							| 11 | 9 9 10 | mp2an |  |-  ( (/) ^o (/) ) e. On | 
						
							| 12 |  | om1 |  |-  ( ( (/) ^o (/) ) e. On -> ( ( (/) ^o (/) ) .o 1o ) = ( (/) ^o (/) ) ) | 
						
							| 13 | 11 12 | ax-mp |  |-  ( ( (/) ^o (/) ) .o 1o ) = ( (/) ^o (/) ) | 
						
							| 14 | 8 13 | eqtrdi |  |-  ( ( B = (/) /\ C = (/) ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = ( (/) ^o (/) ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ( B e. On /\ C e. On ) /\ ( B = (/) /\ C = (/) ) ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = ( (/) ^o (/) ) ) | 
						
							| 16 | 3 15 | eqtr4d |  |-  ( ( ( B e. On /\ C e. On ) /\ ( B = (/) /\ C = (/) ) ) -> ( (/) ^o ( B +o C ) ) = ( ( (/) ^o B ) .o ( (/) ^o C ) ) ) | 
						
							| 17 |  | oacl |  |-  ( ( B e. On /\ C e. On ) -> ( B +o C ) e. On ) | 
						
							| 18 |  | on0eln0 |  |-  ( ( B +o C ) e. On -> ( (/) e. ( B +o C ) <-> ( B +o C ) =/= (/) ) ) | 
						
							| 19 | 17 18 | syl |  |-  ( ( B e. On /\ C e. On ) -> ( (/) e. ( B +o C ) <-> ( B +o C ) =/= (/) ) ) | 
						
							| 20 |  | oe0m1 |  |-  ( ( B +o C ) e. On -> ( (/) e. ( B +o C ) <-> ( (/) ^o ( B +o C ) ) = (/) ) ) | 
						
							| 21 | 17 20 | syl |  |-  ( ( B e. On /\ C e. On ) -> ( (/) e. ( B +o C ) <-> ( (/) ^o ( B +o C ) ) = (/) ) ) | 
						
							| 22 | 1 | necon3abid |  |-  ( ( B e. On /\ C e. On ) -> ( ( B +o C ) =/= (/) <-> -. ( B = (/) /\ C = (/) ) ) ) | 
						
							| 23 | 19 21 22 | 3bitr3d |  |-  ( ( B e. On /\ C e. On ) -> ( ( (/) ^o ( B +o C ) ) = (/) <-> -. ( B = (/) /\ C = (/) ) ) ) | 
						
							| 24 | 23 | biimpar |  |-  ( ( ( B e. On /\ C e. On ) /\ -. ( B = (/) /\ C = (/) ) ) -> ( (/) ^o ( B +o C ) ) = (/) ) | 
						
							| 25 |  | on0eln0 |  |-  ( B e. On -> ( (/) e. B <-> B =/= (/) ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( B e. On /\ C e. On ) -> ( (/) e. B <-> B =/= (/) ) ) | 
						
							| 27 |  | on0eln0 |  |-  ( C e. On -> ( (/) e. C <-> C =/= (/) ) ) | 
						
							| 28 | 27 | adantl |  |-  ( ( B e. On /\ C e. On ) -> ( (/) e. C <-> C =/= (/) ) ) | 
						
							| 29 | 26 28 | orbi12d |  |-  ( ( B e. On /\ C e. On ) -> ( ( (/) e. B \/ (/) e. C ) <-> ( B =/= (/) \/ C =/= (/) ) ) ) | 
						
							| 30 |  | neorian |  |-  ( ( B =/= (/) \/ C =/= (/) ) <-> -. ( B = (/) /\ C = (/) ) ) | 
						
							| 31 | 29 30 | bitrdi |  |-  ( ( B e. On /\ C e. On ) -> ( ( (/) e. B \/ (/) e. C ) <-> -. ( B = (/) /\ C = (/) ) ) ) | 
						
							| 32 |  | oe0m1 |  |-  ( B e. On -> ( (/) e. B <-> ( (/) ^o B ) = (/) ) ) | 
						
							| 33 | 32 | biimpa |  |-  ( ( B e. On /\ (/) e. B ) -> ( (/) ^o B ) = (/) ) | 
						
							| 34 | 33 | oveq1d |  |-  ( ( B e. On /\ (/) e. B ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = ( (/) .o ( (/) ^o C ) ) ) | 
						
							| 35 |  | oecl |  |-  ( ( (/) e. On /\ C e. On ) -> ( (/) ^o C ) e. On ) | 
						
							| 36 | 9 35 | mpan |  |-  ( C e. On -> ( (/) ^o C ) e. On ) | 
						
							| 37 |  | om0r |  |-  ( ( (/) ^o C ) e. On -> ( (/) .o ( (/) ^o C ) ) = (/) ) | 
						
							| 38 | 36 37 | syl |  |-  ( C e. On -> ( (/) .o ( (/) ^o C ) ) = (/) ) | 
						
							| 39 | 34 38 | sylan9eq |  |-  ( ( ( B e. On /\ (/) e. B ) /\ C e. On ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = (/) ) | 
						
							| 40 | 39 | an32s |  |-  ( ( ( B e. On /\ C e. On ) /\ (/) e. B ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = (/) ) | 
						
							| 41 |  | oe0m1 |  |-  ( C e. On -> ( (/) e. C <-> ( (/) ^o C ) = (/) ) ) | 
						
							| 42 | 41 | biimpa |  |-  ( ( C e. On /\ (/) e. C ) -> ( (/) ^o C ) = (/) ) | 
						
							| 43 | 42 | oveq2d |  |-  ( ( C e. On /\ (/) e. C ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = ( ( (/) ^o B ) .o (/) ) ) | 
						
							| 44 |  | oecl |  |-  ( ( (/) e. On /\ B e. On ) -> ( (/) ^o B ) e. On ) | 
						
							| 45 | 9 44 | mpan |  |-  ( B e. On -> ( (/) ^o B ) e. On ) | 
						
							| 46 |  | om0 |  |-  ( ( (/) ^o B ) e. On -> ( ( (/) ^o B ) .o (/) ) = (/) ) | 
						
							| 47 | 45 46 | syl |  |-  ( B e. On -> ( ( (/) ^o B ) .o (/) ) = (/) ) | 
						
							| 48 | 43 47 | sylan9eqr |  |-  ( ( B e. On /\ ( C e. On /\ (/) e. C ) ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = (/) ) | 
						
							| 49 | 48 | anassrs |  |-  ( ( ( B e. On /\ C e. On ) /\ (/) e. C ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = (/) ) | 
						
							| 50 | 40 49 | jaodan |  |-  ( ( ( B e. On /\ C e. On ) /\ ( (/) e. B \/ (/) e. C ) ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = (/) ) | 
						
							| 51 | 50 | ex |  |-  ( ( B e. On /\ C e. On ) -> ( ( (/) e. B \/ (/) e. C ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = (/) ) ) | 
						
							| 52 | 31 51 | sylbird |  |-  ( ( B e. On /\ C e. On ) -> ( -. ( B = (/) /\ C = (/) ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = (/) ) ) | 
						
							| 53 | 52 | imp |  |-  ( ( ( B e. On /\ C e. On ) /\ -. ( B = (/) /\ C = (/) ) ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = (/) ) | 
						
							| 54 | 24 53 | eqtr4d |  |-  ( ( ( B e. On /\ C e. On ) /\ -. ( B = (/) /\ C = (/) ) ) -> ( (/) ^o ( B +o C ) ) = ( ( (/) ^o B ) .o ( (/) ^o C ) ) ) | 
						
							| 55 | 16 54 | pm2.61dan |  |-  ( ( B e. On /\ C e. On ) -> ( (/) ^o ( B +o C ) ) = ( ( (/) ^o B ) .o ( (/) ^o C ) ) ) | 
						
							| 56 |  | oveq1 |  |-  ( A = (/) -> ( A ^o ( B +o C ) ) = ( (/) ^o ( B +o C ) ) ) | 
						
							| 57 |  | oveq1 |  |-  ( A = (/) -> ( A ^o B ) = ( (/) ^o B ) ) | 
						
							| 58 |  | oveq1 |  |-  ( A = (/) -> ( A ^o C ) = ( (/) ^o C ) ) | 
						
							| 59 | 57 58 | oveq12d |  |-  ( A = (/) -> ( ( A ^o B ) .o ( A ^o C ) ) = ( ( (/) ^o B ) .o ( (/) ^o C ) ) ) | 
						
							| 60 | 56 59 | eqeq12d |  |-  ( A = (/) -> ( ( A ^o ( B +o C ) ) = ( ( A ^o B ) .o ( A ^o C ) ) <-> ( (/) ^o ( B +o C ) ) = ( ( (/) ^o B ) .o ( (/) ^o C ) ) ) ) | 
						
							| 61 | 55 60 | imbitrrid |  |-  ( A = (/) -> ( ( B e. On /\ C e. On ) -> ( A ^o ( B +o C ) ) = ( ( A ^o B ) .o ( A ^o C ) ) ) ) | 
						
							| 62 | 61 | impcom |  |-  ( ( ( B e. On /\ C e. On ) /\ A = (/) ) -> ( A ^o ( B +o C ) ) = ( ( A ^o B ) .o ( A ^o C ) ) ) | 
						
							| 63 |  | oveq1 |  |-  ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( A ^o ( B +o C ) ) = ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( B +o C ) ) ) | 
						
							| 64 |  | oveq1 |  |-  ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( A ^o B ) = ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) ) | 
						
							| 65 |  | oveq1 |  |-  ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( A ^o C ) = ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o C ) ) | 
						
							| 66 | 64 65 | oveq12d |  |-  ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( ( A ^o B ) .o ( A ^o C ) ) = ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) .o ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o C ) ) ) | 
						
							| 67 | 63 66 | eqeq12d |  |-  ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( ( A ^o ( B +o C ) ) = ( ( A ^o B ) .o ( A ^o C ) ) <-> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( B +o C ) ) = ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) .o ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o C ) ) ) ) | 
						
							| 68 | 67 | imbi2d |  |-  ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( ( C e. On -> ( A ^o ( B +o C ) ) = ( ( A ^o B ) .o ( A ^o C ) ) ) <-> ( C e. On -> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( B +o C ) ) = ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) .o ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o C ) ) ) ) ) | 
						
							| 69 |  | oveq1 |  |-  ( B = if ( B e. On , B , 1o ) -> ( B +o C ) = ( if ( B e. On , B , 1o ) +o C ) ) | 
						
							| 70 | 69 | oveq2d |  |-  ( B = if ( B e. On , B , 1o ) -> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( B +o C ) ) = ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( if ( B e. On , B , 1o ) +o C ) ) ) | 
						
							| 71 |  | oveq2 |  |-  ( B = if ( B e. On , B , 1o ) -> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) = ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o if ( B e. On , B , 1o ) ) ) | 
						
							| 72 | 71 | oveq1d |  |-  ( B = if ( B e. On , B , 1o ) -> ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) .o ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o C ) ) = ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o if ( B e. On , B , 1o ) ) .o ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o C ) ) ) | 
						
							| 73 | 70 72 | eqeq12d |  |-  ( B = if ( B e. On , B , 1o ) -> ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( B +o C ) ) = ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) .o ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o C ) ) <-> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( if ( B e. On , B , 1o ) +o C ) ) = ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o if ( B e. On , B , 1o ) ) .o ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o C ) ) ) ) | 
						
							| 74 | 73 | imbi2d |  |-  ( B = if ( B e. On , B , 1o ) -> ( ( C e. On -> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( B +o C ) ) = ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) .o ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o C ) ) ) <-> ( C e. On -> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( if ( B e. On , B , 1o ) +o C ) ) = ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o if ( B e. On , B , 1o ) ) .o ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o C ) ) ) ) ) | 
						
							| 75 |  | eleq1 |  |-  ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( A e. On <-> if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On ) ) | 
						
							| 76 |  | eleq2 |  |-  ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( (/) e. A <-> (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) ) ) | 
						
							| 77 | 75 76 | anbi12d |  |-  ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( ( A e. On /\ (/) e. A ) <-> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On /\ (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) ) ) ) | 
						
							| 78 |  | eleq1 |  |-  ( 1o = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( 1o e. On <-> if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On ) ) | 
						
							| 79 |  | eleq2 |  |-  ( 1o = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( (/) e. 1o <-> (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) ) ) | 
						
							| 80 | 78 79 | anbi12d |  |-  ( 1o = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( ( 1o e. On /\ (/) e. 1o ) <-> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On /\ (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) ) ) ) | 
						
							| 81 |  | 1on |  |-  1o e. On | 
						
							| 82 |  | 0lt1o |  |-  (/) e. 1o | 
						
							| 83 | 81 82 | pm3.2i |  |-  ( 1o e. On /\ (/) e. 1o ) | 
						
							| 84 | 77 80 83 | elimhyp |  |-  ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On /\ (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) ) | 
						
							| 85 | 84 | simpli |  |-  if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On | 
						
							| 86 | 84 | simpri |  |-  (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) | 
						
							| 87 | 81 | elimel |  |-  if ( B e. On , B , 1o ) e. On | 
						
							| 88 | 85 86 87 | oeoalem |  |-  ( C e. On -> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( if ( B e. On , B , 1o ) +o C ) ) = ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o if ( B e. On , B , 1o ) ) .o ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o C ) ) ) | 
						
							| 89 | 68 74 88 | dedth2h |  |-  ( ( ( A e. On /\ (/) e. A ) /\ B e. On ) -> ( C e. On -> ( A ^o ( B +o C ) ) = ( ( A ^o B ) .o ( A ^o C ) ) ) ) | 
						
							| 90 | 89 | impr |  |-  ( ( ( A e. On /\ (/) e. A ) /\ ( B e. On /\ C e. On ) ) -> ( A ^o ( B +o C ) ) = ( ( A ^o B ) .o ( A ^o C ) ) ) | 
						
							| 91 | 90 | an32s |  |-  ( ( ( A e. On /\ ( B e. On /\ C e. On ) ) /\ (/) e. A ) -> ( A ^o ( B +o C ) ) = ( ( A ^o B ) .o ( A ^o C ) ) ) | 
						
							| 92 | 62 91 | oe0lem |  |-  ( ( A e. On /\ ( B e. On /\ C e. On ) ) -> ( A ^o ( B +o C ) ) = ( ( A ^o B ) .o ( A ^o C ) ) ) | 
						
							| 93 | 92 | 3impb |  |-  ( ( A e. On /\ B e. On /\ C e. On ) -> ( A ^o ( B +o C ) ) = ( ( A ^o B ) .o ( A ^o C ) ) ) |