Step |
Hyp |
Ref |
Expression |
1 |
|
oa00 |
|- ( ( B e. On /\ C e. On ) -> ( ( B +o C ) = (/) <-> ( B = (/) /\ C = (/) ) ) ) |
2 |
1
|
biimpar |
|- ( ( ( B e. On /\ C e. On ) /\ ( B = (/) /\ C = (/) ) ) -> ( B +o C ) = (/) ) |
3 |
2
|
oveq2d |
|- ( ( ( B e. On /\ C e. On ) /\ ( B = (/) /\ C = (/) ) ) -> ( (/) ^o ( B +o C ) ) = ( (/) ^o (/) ) ) |
4 |
|
oveq2 |
|- ( B = (/) -> ( (/) ^o B ) = ( (/) ^o (/) ) ) |
5 |
|
oveq2 |
|- ( C = (/) -> ( (/) ^o C ) = ( (/) ^o (/) ) ) |
6 |
|
oe0m0 |
|- ( (/) ^o (/) ) = 1o |
7 |
5 6
|
eqtrdi |
|- ( C = (/) -> ( (/) ^o C ) = 1o ) |
8 |
4 7
|
oveqan12d |
|- ( ( B = (/) /\ C = (/) ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = ( ( (/) ^o (/) ) .o 1o ) ) |
9 |
|
0elon |
|- (/) e. On |
10 |
|
oecl |
|- ( ( (/) e. On /\ (/) e. On ) -> ( (/) ^o (/) ) e. On ) |
11 |
9 9 10
|
mp2an |
|- ( (/) ^o (/) ) e. On |
12 |
|
om1 |
|- ( ( (/) ^o (/) ) e. On -> ( ( (/) ^o (/) ) .o 1o ) = ( (/) ^o (/) ) ) |
13 |
11 12
|
ax-mp |
|- ( ( (/) ^o (/) ) .o 1o ) = ( (/) ^o (/) ) |
14 |
8 13
|
eqtrdi |
|- ( ( B = (/) /\ C = (/) ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = ( (/) ^o (/) ) ) |
15 |
14
|
adantl |
|- ( ( ( B e. On /\ C e. On ) /\ ( B = (/) /\ C = (/) ) ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = ( (/) ^o (/) ) ) |
16 |
3 15
|
eqtr4d |
|- ( ( ( B e. On /\ C e. On ) /\ ( B = (/) /\ C = (/) ) ) -> ( (/) ^o ( B +o C ) ) = ( ( (/) ^o B ) .o ( (/) ^o C ) ) ) |
17 |
|
oacl |
|- ( ( B e. On /\ C e. On ) -> ( B +o C ) e. On ) |
18 |
|
on0eln0 |
|- ( ( B +o C ) e. On -> ( (/) e. ( B +o C ) <-> ( B +o C ) =/= (/) ) ) |
19 |
17 18
|
syl |
|- ( ( B e. On /\ C e. On ) -> ( (/) e. ( B +o C ) <-> ( B +o C ) =/= (/) ) ) |
20 |
|
oe0m1 |
|- ( ( B +o C ) e. On -> ( (/) e. ( B +o C ) <-> ( (/) ^o ( B +o C ) ) = (/) ) ) |
21 |
17 20
|
syl |
|- ( ( B e. On /\ C e. On ) -> ( (/) e. ( B +o C ) <-> ( (/) ^o ( B +o C ) ) = (/) ) ) |
22 |
1
|
necon3abid |
|- ( ( B e. On /\ C e. On ) -> ( ( B +o C ) =/= (/) <-> -. ( B = (/) /\ C = (/) ) ) ) |
23 |
19 21 22
|
3bitr3d |
|- ( ( B e. On /\ C e. On ) -> ( ( (/) ^o ( B +o C ) ) = (/) <-> -. ( B = (/) /\ C = (/) ) ) ) |
24 |
23
|
biimpar |
|- ( ( ( B e. On /\ C e. On ) /\ -. ( B = (/) /\ C = (/) ) ) -> ( (/) ^o ( B +o C ) ) = (/) ) |
25 |
|
on0eln0 |
|- ( B e. On -> ( (/) e. B <-> B =/= (/) ) ) |
26 |
25
|
adantr |
|- ( ( B e. On /\ C e. On ) -> ( (/) e. B <-> B =/= (/) ) ) |
27 |
|
on0eln0 |
|- ( C e. On -> ( (/) e. C <-> C =/= (/) ) ) |
28 |
27
|
adantl |
|- ( ( B e. On /\ C e. On ) -> ( (/) e. C <-> C =/= (/) ) ) |
29 |
26 28
|
orbi12d |
|- ( ( B e. On /\ C e. On ) -> ( ( (/) e. B \/ (/) e. C ) <-> ( B =/= (/) \/ C =/= (/) ) ) ) |
30 |
|
neorian |
|- ( ( B =/= (/) \/ C =/= (/) ) <-> -. ( B = (/) /\ C = (/) ) ) |
31 |
29 30
|
bitrdi |
|- ( ( B e. On /\ C e. On ) -> ( ( (/) e. B \/ (/) e. C ) <-> -. ( B = (/) /\ C = (/) ) ) ) |
32 |
|
oe0m1 |
|- ( B e. On -> ( (/) e. B <-> ( (/) ^o B ) = (/) ) ) |
33 |
32
|
biimpa |
|- ( ( B e. On /\ (/) e. B ) -> ( (/) ^o B ) = (/) ) |
34 |
33
|
oveq1d |
|- ( ( B e. On /\ (/) e. B ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = ( (/) .o ( (/) ^o C ) ) ) |
35 |
|
oecl |
|- ( ( (/) e. On /\ C e. On ) -> ( (/) ^o C ) e. On ) |
36 |
9 35
|
mpan |
|- ( C e. On -> ( (/) ^o C ) e. On ) |
37 |
|
om0r |
|- ( ( (/) ^o C ) e. On -> ( (/) .o ( (/) ^o C ) ) = (/) ) |
38 |
36 37
|
syl |
|- ( C e. On -> ( (/) .o ( (/) ^o C ) ) = (/) ) |
39 |
34 38
|
sylan9eq |
|- ( ( ( B e. On /\ (/) e. B ) /\ C e. On ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = (/) ) |
40 |
39
|
an32s |
|- ( ( ( B e. On /\ C e. On ) /\ (/) e. B ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = (/) ) |
41 |
|
oe0m1 |
|- ( C e. On -> ( (/) e. C <-> ( (/) ^o C ) = (/) ) ) |
42 |
41
|
biimpa |
|- ( ( C e. On /\ (/) e. C ) -> ( (/) ^o C ) = (/) ) |
43 |
42
|
oveq2d |
|- ( ( C e. On /\ (/) e. C ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = ( ( (/) ^o B ) .o (/) ) ) |
44 |
|
oecl |
|- ( ( (/) e. On /\ B e. On ) -> ( (/) ^o B ) e. On ) |
45 |
9 44
|
mpan |
|- ( B e. On -> ( (/) ^o B ) e. On ) |
46 |
|
om0 |
|- ( ( (/) ^o B ) e. On -> ( ( (/) ^o B ) .o (/) ) = (/) ) |
47 |
45 46
|
syl |
|- ( B e. On -> ( ( (/) ^o B ) .o (/) ) = (/) ) |
48 |
43 47
|
sylan9eqr |
|- ( ( B e. On /\ ( C e. On /\ (/) e. C ) ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = (/) ) |
49 |
48
|
anassrs |
|- ( ( ( B e. On /\ C e. On ) /\ (/) e. C ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = (/) ) |
50 |
40 49
|
jaodan |
|- ( ( ( B e. On /\ C e. On ) /\ ( (/) e. B \/ (/) e. C ) ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = (/) ) |
51 |
50
|
ex |
|- ( ( B e. On /\ C e. On ) -> ( ( (/) e. B \/ (/) e. C ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = (/) ) ) |
52 |
31 51
|
sylbird |
|- ( ( B e. On /\ C e. On ) -> ( -. ( B = (/) /\ C = (/) ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = (/) ) ) |
53 |
52
|
imp |
|- ( ( ( B e. On /\ C e. On ) /\ -. ( B = (/) /\ C = (/) ) ) -> ( ( (/) ^o B ) .o ( (/) ^o C ) ) = (/) ) |
54 |
24 53
|
eqtr4d |
|- ( ( ( B e. On /\ C e. On ) /\ -. ( B = (/) /\ C = (/) ) ) -> ( (/) ^o ( B +o C ) ) = ( ( (/) ^o B ) .o ( (/) ^o C ) ) ) |
55 |
16 54
|
pm2.61dan |
|- ( ( B e. On /\ C e. On ) -> ( (/) ^o ( B +o C ) ) = ( ( (/) ^o B ) .o ( (/) ^o C ) ) ) |
56 |
|
oveq1 |
|- ( A = (/) -> ( A ^o ( B +o C ) ) = ( (/) ^o ( B +o C ) ) ) |
57 |
|
oveq1 |
|- ( A = (/) -> ( A ^o B ) = ( (/) ^o B ) ) |
58 |
|
oveq1 |
|- ( A = (/) -> ( A ^o C ) = ( (/) ^o C ) ) |
59 |
57 58
|
oveq12d |
|- ( A = (/) -> ( ( A ^o B ) .o ( A ^o C ) ) = ( ( (/) ^o B ) .o ( (/) ^o C ) ) ) |
60 |
56 59
|
eqeq12d |
|- ( A = (/) -> ( ( A ^o ( B +o C ) ) = ( ( A ^o B ) .o ( A ^o C ) ) <-> ( (/) ^o ( B +o C ) ) = ( ( (/) ^o B ) .o ( (/) ^o C ) ) ) ) |
61 |
55 60
|
syl5ibr |
|- ( A = (/) -> ( ( B e. On /\ C e. On ) -> ( A ^o ( B +o C ) ) = ( ( A ^o B ) .o ( A ^o C ) ) ) ) |
62 |
61
|
impcom |
|- ( ( ( B e. On /\ C e. On ) /\ A = (/) ) -> ( A ^o ( B +o C ) ) = ( ( A ^o B ) .o ( A ^o C ) ) ) |
63 |
|
oveq1 |
|- ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( A ^o ( B +o C ) ) = ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( B +o C ) ) ) |
64 |
|
oveq1 |
|- ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( A ^o B ) = ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) ) |
65 |
|
oveq1 |
|- ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( A ^o C ) = ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o C ) ) |
66 |
64 65
|
oveq12d |
|- ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( ( A ^o B ) .o ( A ^o C ) ) = ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) .o ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o C ) ) ) |
67 |
63 66
|
eqeq12d |
|- ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( ( A ^o ( B +o C ) ) = ( ( A ^o B ) .o ( A ^o C ) ) <-> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( B +o C ) ) = ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) .o ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o C ) ) ) ) |
68 |
67
|
imbi2d |
|- ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( ( C e. On -> ( A ^o ( B +o C ) ) = ( ( A ^o B ) .o ( A ^o C ) ) ) <-> ( C e. On -> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( B +o C ) ) = ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) .o ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o C ) ) ) ) ) |
69 |
|
oveq1 |
|- ( B = if ( B e. On , B , 1o ) -> ( B +o C ) = ( if ( B e. On , B , 1o ) +o C ) ) |
70 |
69
|
oveq2d |
|- ( B = if ( B e. On , B , 1o ) -> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( B +o C ) ) = ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( if ( B e. On , B , 1o ) +o C ) ) ) |
71 |
|
oveq2 |
|- ( B = if ( B e. On , B , 1o ) -> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) = ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o if ( B e. On , B , 1o ) ) ) |
72 |
71
|
oveq1d |
|- ( B = if ( B e. On , B , 1o ) -> ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) .o ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o C ) ) = ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o if ( B e. On , B , 1o ) ) .o ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o C ) ) ) |
73 |
70 72
|
eqeq12d |
|- ( B = if ( B e. On , B , 1o ) -> ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( B +o C ) ) = ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) .o ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o C ) ) <-> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( if ( B e. On , B , 1o ) +o C ) ) = ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o if ( B e. On , B , 1o ) ) .o ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o C ) ) ) ) |
74 |
73
|
imbi2d |
|- ( B = if ( B e. On , B , 1o ) -> ( ( C e. On -> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( B +o C ) ) = ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) .o ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o C ) ) ) <-> ( C e. On -> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( if ( B e. On , B , 1o ) +o C ) ) = ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o if ( B e. On , B , 1o ) ) .o ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o C ) ) ) ) ) |
75 |
|
eleq1 |
|- ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( A e. On <-> if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On ) ) |
76 |
|
eleq2 |
|- ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( (/) e. A <-> (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) ) ) |
77 |
75 76
|
anbi12d |
|- ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( ( A e. On /\ (/) e. A ) <-> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On /\ (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) ) ) ) |
78 |
|
eleq1 |
|- ( 1o = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( 1o e. On <-> if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On ) ) |
79 |
|
eleq2 |
|- ( 1o = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( (/) e. 1o <-> (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) ) ) |
80 |
78 79
|
anbi12d |
|- ( 1o = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( ( 1o e. On /\ (/) e. 1o ) <-> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On /\ (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) ) ) ) |
81 |
|
1on |
|- 1o e. On |
82 |
|
0lt1o |
|- (/) e. 1o |
83 |
81 82
|
pm3.2i |
|- ( 1o e. On /\ (/) e. 1o ) |
84 |
77 80 83
|
elimhyp |
|- ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On /\ (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) ) |
85 |
84
|
simpli |
|- if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On |
86 |
84
|
simpri |
|- (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) |
87 |
81
|
elimel |
|- if ( B e. On , B , 1o ) e. On |
88 |
85 86 87
|
oeoalem |
|- ( C e. On -> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( if ( B e. On , B , 1o ) +o C ) ) = ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o if ( B e. On , B , 1o ) ) .o ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o C ) ) ) |
89 |
68 74 88
|
dedth2h |
|- ( ( ( A e. On /\ (/) e. A ) /\ B e. On ) -> ( C e. On -> ( A ^o ( B +o C ) ) = ( ( A ^o B ) .o ( A ^o C ) ) ) ) |
90 |
89
|
impr |
|- ( ( ( A e. On /\ (/) e. A ) /\ ( B e. On /\ C e. On ) ) -> ( A ^o ( B +o C ) ) = ( ( A ^o B ) .o ( A ^o C ) ) ) |
91 |
90
|
an32s |
|- ( ( ( A e. On /\ ( B e. On /\ C e. On ) ) /\ (/) e. A ) -> ( A ^o ( B +o C ) ) = ( ( A ^o B ) .o ( A ^o C ) ) ) |
92 |
62 91
|
oe0lem |
|- ( ( A e. On /\ ( B e. On /\ C e. On ) ) -> ( A ^o ( B +o C ) ) = ( ( A ^o B ) .o ( A ^o C ) ) ) |
93 |
92
|
3impb |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( A ^o ( B +o C ) ) = ( ( A ^o B ) .o ( A ^o C ) ) ) |