| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( B = (/) -> ( (/) ^o B ) = ( (/) ^o (/) ) ) | 
						
							| 2 |  | oe0m0 |  |-  ( (/) ^o (/) ) = 1o | 
						
							| 3 | 1 2 | eqtrdi |  |-  ( B = (/) -> ( (/) ^o B ) = 1o ) | 
						
							| 4 | 3 | oveq1d |  |-  ( B = (/) -> ( ( (/) ^o B ) ^o C ) = ( 1o ^o C ) ) | 
						
							| 5 |  | oe1m |  |-  ( C e. On -> ( 1o ^o C ) = 1o ) | 
						
							| 6 | 4 5 | sylan9eqr |  |-  ( ( C e. On /\ B = (/) ) -> ( ( (/) ^o B ) ^o C ) = 1o ) | 
						
							| 7 | 6 | adantll |  |-  ( ( ( B e. On /\ C e. On ) /\ B = (/) ) -> ( ( (/) ^o B ) ^o C ) = 1o ) | 
						
							| 8 |  | oveq2 |  |-  ( C = (/) -> ( ( (/) ^o B ) ^o C ) = ( ( (/) ^o B ) ^o (/) ) ) | 
						
							| 9 |  | 0elon |  |-  (/) e. On | 
						
							| 10 |  | oecl |  |-  ( ( (/) e. On /\ B e. On ) -> ( (/) ^o B ) e. On ) | 
						
							| 11 | 9 10 | mpan |  |-  ( B e. On -> ( (/) ^o B ) e. On ) | 
						
							| 12 |  | oe0 |  |-  ( ( (/) ^o B ) e. On -> ( ( (/) ^o B ) ^o (/) ) = 1o ) | 
						
							| 13 | 11 12 | syl |  |-  ( B e. On -> ( ( (/) ^o B ) ^o (/) ) = 1o ) | 
						
							| 14 | 8 13 | sylan9eqr |  |-  ( ( B e. On /\ C = (/) ) -> ( ( (/) ^o B ) ^o C ) = 1o ) | 
						
							| 15 | 14 | adantlr |  |-  ( ( ( B e. On /\ C e. On ) /\ C = (/) ) -> ( ( (/) ^o B ) ^o C ) = 1o ) | 
						
							| 16 | 7 15 | jaodan |  |-  ( ( ( B e. On /\ C e. On ) /\ ( B = (/) \/ C = (/) ) ) -> ( ( (/) ^o B ) ^o C ) = 1o ) | 
						
							| 17 |  | om00 |  |-  ( ( B e. On /\ C e. On ) -> ( ( B .o C ) = (/) <-> ( B = (/) \/ C = (/) ) ) ) | 
						
							| 18 | 17 | biimpar |  |-  ( ( ( B e. On /\ C e. On ) /\ ( B = (/) \/ C = (/) ) ) -> ( B .o C ) = (/) ) | 
						
							| 19 | 18 | oveq2d |  |-  ( ( ( B e. On /\ C e. On ) /\ ( B = (/) \/ C = (/) ) ) -> ( (/) ^o ( B .o C ) ) = ( (/) ^o (/) ) ) | 
						
							| 20 | 19 2 | eqtrdi |  |-  ( ( ( B e. On /\ C e. On ) /\ ( B = (/) \/ C = (/) ) ) -> ( (/) ^o ( B .o C ) ) = 1o ) | 
						
							| 21 | 16 20 | eqtr4d |  |-  ( ( ( B e. On /\ C e. On ) /\ ( B = (/) \/ C = (/) ) ) -> ( ( (/) ^o B ) ^o C ) = ( (/) ^o ( B .o C ) ) ) | 
						
							| 22 |  | on0eln0 |  |-  ( B e. On -> ( (/) e. B <-> B =/= (/) ) ) | 
						
							| 23 |  | on0eln0 |  |-  ( C e. On -> ( (/) e. C <-> C =/= (/) ) ) | 
						
							| 24 | 22 23 | bi2anan9 |  |-  ( ( B e. On /\ C e. On ) -> ( ( (/) e. B /\ (/) e. C ) <-> ( B =/= (/) /\ C =/= (/) ) ) ) | 
						
							| 25 |  | neanior |  |-  ( ( B =/= (/) /\ C =/= (/) ) <-> -. ( B = (/) \/ C = (/) ) ) | 
						
							| 26 | 24 25 | bitrdi |  |-  ( ( B e. On /\ C e. On ) -> ( ( (/) e. B /\ (/) e. C ) <-> -. ( B = (/) \/ C = (/) ) ) ) | 
						
							| 27 |  | oe0m1 |  |-  ( B e. On -> ( (/) e. B <-> ( (/) ^o B ) = (/) ) ) | 
						
							| 28 | 27 | biimpa |  |-  ( ( B e. On /\ (/) e. B ) -> ( (/) ^o B ) = (/) ) | 
						
							| 29 | 28 | oveq1d |  |-  ( ( B e. On /\ (/) e. B ) -> ( ( (/) ^o B ) ^o C ) = ( (/) ^o C ) ) | 
						
							| 30 |  | oe0m1 |  |-  ( C e. On -> ( (/) e. C <-> ( (/) ^o C ) = (/) ) ) | 
						
							| 31 | 30 | biimpa |  |-  ( ( C e. On /\ (/) e. C ) -> ( (/) ^o C ) = (/) ) | 
						
							| 32 | 29 31 | sylan9eq |  |-  ( ( ( B e. On /\ (/) e. B ) /\ ( C e. On /\ (/) e. C ) ) -> ( ( (/) ^o B ) ^o C ) = (/) ) | 
						
							| 33 | 32 | an4s |  |-  ( ( ( B e. On /\ C e. On ) /\ ( (/) e. B /\ (/) e. C ) ) -> ( ( (/) ^o B ) ^o C ) = (/) ) | 
						
							| 34 |  | om00el |  |-  ( ( B e. On /\ C e. On ) -> ( (/) e. ( B .o C ) <-> ( (/) e. B /\ (/) e. C ) ) ) | 
						
							| 35 |  | omcl |  |-  ( ( B e. On /\ C e. On ) -> ( B .o C ) e. On ) | 
						
							| 36 |  | oe0m1 |  |-  ( ( B .o C ) e. On -> ( (/) e. ( B .o C ) <-> ( (/) ^o ( B .o C ) ) = (/) ) ) | 
						
							| 37 | 35 36 | syl |  |-  ( ( B e. On /\ C e. On ) -> ( (/) e. ( B .o C ) <-> ( (/) ^o ( B .o C ) ) = (/) ) ) | 
						
							| 38 | 34 37 | bitr3d |  |-  ( ( B e. On /\ C e. On ) -> ( ( (/) e. B /\ (/) e. C ) <-> ( (/) ^o ( B .o C ) ) = (/) ) ) | 
						
							| 39 | 38 | biimpa |  |-  ( ( ( B e. On /\ C e. On ) /\ ( (/) e. B /\ (/) e. C ) ) -> ( (/) ^o ( B .o C ) ) = (/) ) | 
						
							| 40 | 33 39 | eqtr4d |  |-  ( ( ( B e. On /\ C e. On ) /\ ( (/) e. B /\ (/) e. C ) ) -> ( ( (/) ^o B ) ^o C ) = ( (/) ^o ( B .o C ) ) ) | 
						
							| 41 | 40 | ex |  |-  ( ( B e. On /\ C e. On ) -> ( ( (/) e. B /\ (/) e. C ) -> ( ( (/) ^o B ) ^o C ) = ( (/) ^o ( B .o C ) ) ) ) | 
						
							| 42 | 26 41 | sylbird |  |-  ( ( B e. On /\ C e. On ) -> ( -. ( B = (/) \/ C = (/) ) -> ( ( (/) ^o B ) ^o C ) = ( (/) ^o ( B .o C ) ) ) ) | 
						
							| 43 | 42 | imp |  |-  ( ( ( B e. On /\ C e. On ) /\ -. ( B = (/) \/ C = (/) ) ) -> ( ( (/) ^o B ) ^o C ) = ( (/) ^o ( B .o C ) ) ) | 
						
							| 44 | 21 43 | pm2.61dan |  |-  ( ( B e. On /\ C e. On ) -> ( ( (/) ^o B ) ^o C ) = ( (/) ^o ( B .o C ) ) ) | 
						
							| 45 |  | oveq1 |  |-  ( A = (/) -> ( A ^o B ) = ( (/) ^o B ) ) | 
						
							| 46 | 45 | oveq1d |  |-  ( A = (/) -> ( ( A ^o B ) ^o C ) = ( ( (/) ^o B ) ^o C ) ) | 
						
							| 47 |  | oveq1 |  |-  ( A = (/) -> ( A ^o ( B .o C ) ) = ( (/) ^o ( B .o C ) ) ) | 
						
							| 48 | 46 47 | eqeq12d |  |-  ( A = (/) -> ( ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) <-> ( ( (/) ^o B ) ^o C ) = ( (/) ^o ( B .o C ) ) ) ) | 
						
							| 49 | 44 48 | imbitrrid |  |-  ( A = (/) -> ( ( B e. On /\ C e. On ) -> ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) ) ) | 
						
							| 50 | 49 | impcom |  |-  ( ( ( B e. On /\ C e. On ) /\ A = (/) ) -> ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) ) | 
						
							| 51 |  | oveq1 |  |-  ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( A ^o B ) = ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) ) | 
						
							| 52 | 51 | oveq1d |  |-  ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( ( A ^o B ) ^o C ) = ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) ^o C ) ) | 
						
							| 53 |  | oveq1 |  |-  ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( A ^o ( B .o C ) ) = ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( B .o C ) ) ) | 
						
							| 54 | 52 53 | eqeq12d |  |-  ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) <-> ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) ^o C ) = ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( B .o C ) ) ) ) | 
						
							| 55 | 54 | imbi2d |  |-  ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( ( ( B e. On /\ C e. On ) -> ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) ) <-> ( ( B e. On /\ C e. On ) -> ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) ^o C ) = ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( B .o C ) ) ) ) ) | 
						
							| 56 |  | eleq1 |  |-  ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( A e. On <-> if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On ) ) | 
						
							| 57 |  | eleq2 |  |-  ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( (/) e. A <-> (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) ) ) | 
						
							| 58 | 56 57 | anbi12d |  |-  ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( ( A e. On /\ (/) e. A ) <-> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On /\ (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) ) ) ) | 
						
							| 59 |  | eleq1 |  |-  ( 1o = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( 1o e. On <-> if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On ) ) | 
						
							| 60 |  | eleq2 |  |-  ( 1o = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( (/) e. 1o <-> (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) ) ) | 
						
							| 61 | 59 60 | anbi12d |  |-  ( 1o = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( ( 1o e. On /\ (/) e. 1o ) <-> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On /\ (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) ) ) ) | 
						
							| 62 |  | 1on |  |-  1o e. On | 
						
							| 63 |  | 0lt1o |  |-  (/) e. 1o | 
						
							| 64 | 62 63 | pm3.2i |  |-  ( 1o e. On /\ (/) e. 1o ) | 
						
							| 65 | 58 61 64 | elimhyp |  |-  ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On /\ (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) ) | 
						
							| 66 | 65 | simpli |  |-  if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On | 
						
							| 67 | 65 | simpri |  |-  (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) | 
						
							| 68 | 66 67 | oeoelem |  |-  ( ( B e. On /\ C e. On ) -> ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) ^o C ) = ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( B .o C ) ) ) | 
						
							| 69 | 55 68 | dedth |  |-  ( ( A e. On /\ (/) e. A ) -> ( ( B e. On /\ C e. On ) -> ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) ) ) | 
						
							| 70 | 69 | imp |  |-  ( ( ( A e. On /\ (/) e. A ) /\ ( B e. On /\ C e. On ) ) -> ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) ) | 
						
							| 71 | 70 | an32s |  |-  ( ( ( A e. On /\ ( B e. On /\ C e. On ) ) /\ (/) e. A ) -> ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) ) | 
						
							| 72 | 50 71 | oe0lem |  |-  ( ( A e. On /\ ( B e. On /\ C e. On ) ) -> ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) ) | 
						
							| 73 | 72 | 3impb |  |-  ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) ) |