Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( B = (/) -> ( (/) ^o B ) = ( (/) ^o (/) ) ) |
2 |
|
oe0m0 |
|- ( (/) ^o (/) ) = 1o |
3 |
1 2
|
eqtrdi |
|- ( B = (/) -> ( (/) ^o B ) = 1o ) |
4 |
3
|
oveq1d |
|- ( B = (/) -> ( ( (/) ^o B ) ^o C ) = ( 1o ^o C ) ) |
5 |
|
oe1m |
|- ( C e. On -> ( 1o ^o C ) = 1o ) |
6 |
4 5
|
sylan9eqr |
|- ( ( C e. On /\ B = (/) ) -> ( ( (/) ^o B ) ^o C ) = 1o ) |
7 |
6
|
adantll |
|- ( ( ( B e. On /\ C e. On ) /\ B = (/) ) -> ( ( (/) ^o B ) ^o C ) = 1o ) |
8 |
|
oveq2 |
|- ( C = (/) -> ( ( (/) ^o B ) ^o C ) = ( ( (/) ^o B ) ^o (/) ) ) |
9 |
|
0elon |
|- (/) e. On |
10 |
|
oecl |
|- ( ( (/) e. On /\ B e. On ) -> ( (/) ^o B ) e. On ) |
11 |
9 10
|
mpan |
|- ( B e. On -> ( (/) ^o B ) e. On ) |
12 |
|
oe0 |
|- ( ( (/) ^o B ) e. On -> ( ( (/) ^o B ) ^o (/) ) = 1o ) |
13 |
11 12
|
syl |
|- ( B e. On -> ( ( (/) ^o B ) ^o (/) ) = 1o ) |
14 |
8 13
|
sylan9eqr |
|- ( ( B e. On /\ C = (/) ) -> ( ( (/) ^o B ) ^o C ) = 1o ) |
15 |
14
|
adantlr |
|- ( ( ( B e. On /\ C e. On ) /\ C = (/) ) -> ( ( (/) ^o B ) ^o C ) = 1o ) |
16 |
7 15
|
jaodan |
|- ( ( ( B e. On /\ C e. On ) /\ ( B = (/) \/ C = (/) ) ) -> ( ( (/) ^o B ) ^o C ) = 1o ) |
17 |
|
om00 |
|- ( ( B e. On /\ C e. On ) -> ( ( B .o C ) = (/) <-> ( B = (/) \/ C = (/) ) ) ) |
18 |
17
|
biimpar |
|- ( ( ( B e. On /\ C e. On ) /\ ( B = (/) \/ C = (/) ) ) -> ( B .o C ) = (/) ) |
19 |
18
|
oveq2d |
|- ( ( ( B e. On /\ C e. On ) /\ ( B = (/) \/ C = (/) ) ) -> ( (/) ^o ( B .o C ) ) = ( (/) ^o (/) ) ) |
20 |
19 2
|
eqtrdi |
|- ( ( ( B e. On /\ C e. On ) /\ ( B = (/) \/ C = (/) ) ) -> ( (/) ^o ( B .o C ) ) = 1o ) |
21 |
16 20
|
eqtr4d |
|- ( ( ( B e. On /\ C e. On ) /\ ( B = (/) \/ C = (/) ) ) -> ( ( (/) ^o B ) ^o C ) = ( (/) ^o ( B .o C ) ) ) |
22 |
|
on0eln0 |
|- ( B e. On -> ( (/) e. B <-> B =/= (/) ) ) |
23 |
|
on0eln0 |
|- ( C e. On -> ( (/) e. C <-> C =/= (/) ) ) |
24 |
22 23
|
bi2anan9 |
|- ( ( B e. On /\ C e. On ) -> ( ( (/) e. B /\ (/) e. C ) <-> ( B =/= (/) /\ C =/= (/) ) ) ) |
25 |
|
neanior |
|- ( ( B =/= (/) /\ C =/= (/) ) <-> -. ( B = (/) \/ C = (/) ) ) |
26 |
24 25
|
bitrdi |
|- ( ( B e. On /\ C e. On ) -> ( ( (/) e. B /\ (/) e. C ) <-> -. ( B = (/) \/ C = (/) ) ) ) |
27 |
|
oe0m1 |
|- ( B e. On -> ( (/) e. B <-> ( (/) ^o B ) = (/) ) ) |
28 |
27
|
biimpa |
|- ( ( B e. On /\ (/) e. B ) -> ( (/) ^o B ) = (/) ) |
29 |
28
|
oveq1d |
|- ( ( B e. On /\ (/) e. B ) -> ( ( (/) ^o B ) ^o C ) = ( (/) ^o C ) ) |
30 |
|
oe0m1 |
|- ( C e. On -> ( (/) e. C <-> ( (/) ^o C ) = (/) ) ) |
31 |
30
|
biimpa |
|- ( ( C e. On /\ (/) e. C ) -> ( (/) ^o C ) = (/) ) |
32 |
29 31
|
sylan9eq |
|- ( ( ( B e. On /\ (/) e. B ) /\ ( C e. On /\ (/) e. C ) ) -> ( ( (/) ^o B ) ^o C ) = (/) ) |
33 |
32
|
an4s |
|- ( ( ( B e. On /\ C e. On ) /\ ( (/) e. B /\ (/) e. C ) ) -> ( ( (/) ^o B ) ^o C ) = (/) ) |
34 |
|
om00el |
|- ( ( B e. On /\ C e. On ) -> ( (/) e. ( B .o C ) <-> ( (/) e. B /\ (/) e. C ) ) ) |
35 |
|
omcl |
|- ( ( B e. On /\ C e. On ) -> ( B .o C ) e. On ) |
36 |
|
oe0m1 |
|- ( ( B .o C ) e. On -> ( (/) e. ( B .o C ) <-> ( (/) ^o ( B .o C ) ) = (/) ) ) |
37 |
35 36
|
syl |
|- ( ( B e. On /\ C e. On ) -> ( (/) e. ( B .o C ) <-> ( (/) ^o ( B .o C ) ) = (/) ) ) |
38 |
34 37
|
bitr3d |
|- ( ( B e. On /\ C e. On ) -> ( ( (/) e. B /\ (/) e. C ) <-> ( (/) ^o ( B .o C ) ) = (/) ) ) |
39 |
38
|
biimpa |
|- ( ( ( B e. On /\ C e. On ) /\ ( (/) e. B /\ (/) e. C ) ) -> ( (/) ^o ( B .o C ) ) = (/) ) |
40 |
33 39
|
eqtr4d |
|- ( ( ( B e. On /\ C e. On ) /\ ( (/) e. B /\ (/) e. C ) ) -> ( ( (/) ^o B ) ^o C ) = ( (/) ^o ( B .o C ) ) ) |
41 |
40
|
ex |
|- ( ( B e. On /\ C e. On ) -> ( ( (/) e. B /\ (/) e. C ) -> ( ( (/) ^o B ) ^o C ) = ( (/) ^o ( B .o C ) ) ) ) |
42 |
26 41
|
sylbird |
|- ( ( B e. On /\ C e. On ) -> ( -. ( B = (/) \/ C = (/) ) -> ( ( (/) ^o B ) ^o C ) = ( (/) ^o ( B .o C ) ) ) ) |
43 |
42
|
imp |
|- ( ( ( B e. On /\ C e. On ) /\ -. ( B = (/) \/ C = (/) ) ) -> ( ( (/) ^o B ) ^o C ) = ( (/) ^o ( B .o C ) ) ) |
44 |
21 43
|
pm2.61dan |
|- ( ( B e. On /\ C e. On ) -> ( ( (/) ^o B ) ^o C ) = ( (/) ^o ( B .o C ) ) ) |
45 |
|
oveq1 |
|- ( A = (/) -> ( A ^o B ) = ( (/) ^o B ) ) |
46 |
45
|
oveq1d |
|- ( A = (/) -> ( ( A ^o B ) ^o C ) = ( ( (/) ^o B ) ^o C ) ) |
47 |
|
oveq1 |
|- ( A = (/) -> ( A ^o ( B .o C ) ) = ( (/) ^o ( B .o C ) ) ) |
48 |
46 47
|
eqeq12d |
|- ( A = (/) -> ( ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) <-> ( ( (/) ^o B ) ^o C ) = ( (/) ^o ( B .o C ) ) ) ) |
49 |
44 48
|
syl5ibr |
|- ( A = (/) -> ( ( B e. On /\ C e. On ) -> ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) ) ) |
50 |
49
|
impcom |
|- ( ( ( B e. On /\ C e. On ) /\ A = (/) ) -> ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) ) |
51 |
|
oveq1 |
|- ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( A ^o B ) = ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) ) |
52 |
51
|
oveq1d |
|- ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( ( A ^o B ) ^o C ) = ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) ^o C ) ) |
53 |
|
oveq1 |
|- ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( A ^o ( B .o C ) ) = ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( B .o C ) ) ) |
54 |
52 53
|
eqeq12d |
|- ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) <-> ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) ^o C ) = ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( B .o C ) ) ) ) |
55 |
54
|
imbi2d |
|- ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( ( ( B e. On /\ C e. On ) -> ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) ) <-> ( ( B e. On /\ C e. On ) -> ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) ^o C ) = ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( B .o C ) ) ) ) ) |
56 |
|
eleq1 |
|- ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( A e. On <-> if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On ) ) |
57 |
|
eleq2 |
|- ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( (/) e. A <-> (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) ) ) |
58 |
56 57
|
anbi12d |
|- ( A = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( ( A e. On /\ (/) e. A ) <-> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On /\ (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) ) ) ) |
59 |
|
eleq1 |
|- ( 1o = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( 1o e. On <-> if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On ) ) |
60 |
|
eleq2 |
|- ( 1o = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( (/) e. 1o <-> (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) ) ) |
61 |
59 60
|
anbi12d |
|- ( 1o = if ( ( A e. On /\ (/) e. A ) , A , 1o ) -> ( ( 1o e. On /\ (/) e. 1o ) <-> ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On /\ (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) ) ) ) |
62 |
|
1on |
|- 1o e. On |
63 |
|
0lt1o |
|- (/) e. 1o |
64 |
62 63
|
pm3.2i |
|- ( 1o e. On /\ (/) e. 1o ) |
65 |
58 61 64
|
elimhyp |
|- ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On /\ (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) ) |
66 |
65
|
simpli |
|- if ( ( A e. On /\ (/) e. A ) , A , 1o ) e. On |
67 |
65
|
simpri |
|- (/) e. if ( ( A e. On /\ (/) e. A ) , A , 1o ) |
68 |
66 67
|
oeoelem |
|- ( ( B e. On /\ C e. On ) -> ( ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o B ) ^o C ) = ( if ( ( A e. On /\ (/) e. A ) , A , 1o ) ^o ( B .o C ) ) ) |
69 |
55 68
|
dedth |
|- ( ( A e. On /\ (/) e. A ) -> ( ( B e. On /\ C e. On ) -> ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) ) ) |
70 |
69
|
imp |
|- ( ( ( A e. On /\ (/) e. A ) /\ ( B e. On /\ C e. On ) ) -> ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) ) |
71 |
70
|
an32s |
|- ( ( ( A e. On /\ ( B e. On /\ C e. On ) ) /\ (/) e. A ) -> ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) ) |
72 |
50 71
|
oe0lem |
|- ( ( A e. On /\ ( B e. On /\ C e. On ) ) -> ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) ) |
73 |
72
|
3impb |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A ^o B ) ^o C ) = ( A ^o ( B .o C ) ) ) |