| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oeordi |
|- ( ( B e. On /\ C e. ( On \ 2o ) ) -> ( A e. B -> ( C ^o A ) e. ( C ^o B ) ) ) |
| 2 |
1
|
3adant1 |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A e. B -> ( C ^o A ) e. ( C ^o B ) ) ) |
| 3 |
|
oveq2 |
|- ( A = B -> ( C ^o A ) = ( C ^o B ) ) |
| 4 |
3
|
a1i |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A = B -> ( C ^o A ) = ( C ^o B ) ) ) |
| 5 |
|
oeordi |
|- ( ( A e. On /\ C e. ( On \ 2o ) ) -> ( B e. A -> ( C ^o B ) e. ( C ^o A ) ) ) |
| 6 |
5
|
3adant2 |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( B e. A -> ( C ^o B ) e. ( C ^o A ) ) ) |
| 7 |
4 6
|
orim12d |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( ( A = B \/ B e. A ) -> ( ( C ^o A ) = ( C ^o B ) \/ ( C ^o B ) e. ( C ^o A ) ) ) ) |
| 8 |
7
|
con3d |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( -. ( ( C ^o A ) = ( C ^o B ) \/ ( C ^o B ) e. ( C ^o A ) ) -> -. ( A = B \/ B e. A ) ) ) |
| 9 |
|
eldifi |
|- ( C e. ( On \ 2o ) -> C e. On ) |
| 10 |
9
|
3ad2ant3 |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> C e. On ) |
| 11 |
|
simp1 |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> A e. On ) |
| 12 |
|
oecl |
|- ( ( C e. On /\ A e. On ) -> ( C ^o A ) e. On ) |
| 13 |
10 11 12
|
syl2anc |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( C ^o A ) e. On ) |
| 14 |
|
simp2 |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> B e. On ) |
| 15 |
|
oecl |
|- ( ( C e. On /\ B e. On ) -> ( C ^o B ) e. On ) |
| 16 |
10 14 15
|
syl2anc |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( C ^o B ) e. On ) |
| 17 |
|
eloni |
|- ( ( C ^o A ) e. On -> Ord ( C ^o A ) ) |
| 18 |
|
eloni |
|- ( ( C ^o B ) e. On -> Ord ( C ^o B ) ) |
| 19 |
|
ordtri2 |
|- ( ( Ord ( C ^o A ) /\ Ord ( C ^o B ) ) -> ( ( C ^o A ) e. ( C ^o B ) <-> -. ( ( C ^o A ) = ( C ^o B ) \/ ( C ^o B ) e. ( C ^o A ) ) ) ) |
| 20 |
17 18 19
|
syl2an |
|- ( ( ( C ^o A ) e. On /\ ( C ^o B ) e. On ) -> ( ( C ^o A ) e. ( C ^o B ) <-> -. ( ( C ^o A ) = ( C ^o B ) \/ ( C ^o B ) e. ( C ^o A ) ) ) ) |
| 21 |
13 16 20
|
syl2anc |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( ( C ^o A ) e. ( C ^o B ) <-> -. ( ( C ^o A ) = ( C ^o B ) \/ ( C ^o B ) e. ( C ^o A ) ) ) ) |
| 22 |
|
eloni |
|- ( A e. On -> Ord A ) |
| 23 |
|
eloni |
|- ( B e. On -> Ord B ) |
| 24 |
|
ordtri2 |
|- ( ( Ord A /\ Ord B ) -> ( A e. B <-> -. ( A = B \/ B e. A ) ) ) |
| 25 |
22 23 24
|
syl2an |
|- ( ( A e. On /\ B e. On ) -> ( A e. B <-> -. ( A = B \/ B e. A ) ) ) |
| 26 |
25
|
3adant3 |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A e. B <-> -. ( A = B \/ B e. A ) ) ) |
| 27 |
8 21 26
|
3imtr4d |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( ( C ^o A ) e. ( C ^o B ) -> A e. B ) ) |
| 28 |
2 27
|
impbid |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A e. B <-> ( C ^o A ) e. ( C ^o B ) ) ) |