Step |
Hyp |
Ref |
Expression |
1 |
|
oeordi |
|- ( ( B e. On /\ C e. ( On \ 2o ) ) -> ( A e. B -> ( C ^o A ) e. ( C ^o B ) ) ) |
2 |
1
|
3adant1 |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A e. B -> ( C ^o A ) e. ( C ^o B ) ) ) |
3 |
|
oveq2 |
|- ( A = B -> ( C ^o A ) = ( C ^o B ) ) |
4 |
3
|
a1i |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A = B -> ( C ^o A ) = ( C ^o B ) ) ) |
5 |
|
oeordi |
|- ( ( A e. On /\ C e. ( On \ 2o ) ) -> ( B e. A -> ( C ^o B ) e. ( C ^o A ) ) ) |
6 |
5
|
3adant2 |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( B e. A -> ( C ^o B ) e. ( C ^o A ) ) ) |
7 |
4 6
|
orim12d |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( ( A = B \/ B e. A ) -> ( ( C ^o A ) = ( C ^o B ) \/ ( C ^o B ) e. ( C ^o A ) ) ) ) |
8 |
7
|
con3d |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( -. ( ( C ^o A ) = ( C ^o B ) \/ ( C ^o B ) e. ( C ^o A ) ) -> -. ( A = B \/ B e. A ) ) ) |
9 |
|
eldifi |
|- ( C e. ( On \ 2o ) -> C e. On ) |
10 |
9
|
3ad2ant3 |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> C e. On ) |
11 |
|
simp1 |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> A e. On ) |
12 |
|
oecl |
|- ( ( C e. On /\ A e. On ) -> ( C ^o A ) e. On ) |
13 |
10 11 12
|
syl2anc |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( C ^o A ) e. On ) |
14 |
|
simp2 |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> B e. On ) |
15 |
|
oecl |
|- ( ( C e. On /\ B e. On ) -> ( C ^o B ) e. On ) |
16 |
10 14 15
|
syl2anc |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( C ^o B ) e. On ) |
17 |
|
eloni |
|- ( ( C ^o A ) e. On -> Ord ( C ^o A ) ) |
18 |
|
eloni |
|- ( ( C ^o B ) e. On -> Ord ( C ^o B ) ) |
19 |
|
ordtri2 |
|- ( ( Ord ( C ^o A ) /\ Ord ( C ^o B ) ) -> ( ( C ^o A ) e. ( C ^o B ) <-> -. ( ( C ^o A ) = ( C ^o B ) \/ ( C ^o B ) e. ( C ^o A ) ) ) ) |
20 |
17 18 19
|
syl2an |
|- ( ( ( C ^o A ) e. On /\ ( C ^o B ) e. On ) -> ( ( C ^o A ) e. ( C ^o B ) <-> -. ( ( C ^o A ) = ( C ^o B ) \/ ( C ^o B ) e. ( C ^o A ) ) ) ) |
21 |
13 16 20
|
syl2anc |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( ( C ^o A ) e. ( C ^o B ) <-> -. ( ( C ^o A ) = ( C ^o B ) \/ ( C ^o B ) e. ( C ^o A ) ) ) ) |
22 |
|
eloni |
|- ( A e. On -> Ord A ) |
23 |
|
eloni |
|- ( B e. On -> Ord B ) |
24 |
|
ordtri2 |
|- ( ( Ord A /\ Ord B ) -> ( A e. B <-> -. ( A = B \/ B e. A ) ) ) |
25 |
22 23 24
|
syl2an |
|- ( ( A e. On /\ B e. On ) -> ( A e. B <-> -. ( A = B \/ B e. A ) ) ) |
26 |
25
|
3adant3 |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A e. B <-> -. ( A = B \/ B e. A ) ) ) |
27 |
8 21 26
|
3imtr4d |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( ( C ^o A ) e. ( C ^o B ) -> A e. B ) ) |
28 |
2 27
|
impbid |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A e. B <-> ( C ^o A ) e. ( C ^o B ) ) ) |