| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oeordi |  |-  ( ( B e. On /\ C e. ( On \ 2o ) ) -> ( A e. B -> ( C ^o A ) e. ( C ^o B ) ) ) | 
						
							| 2 | 1 | 3adant1 |  |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A e. B -> ( C ^o A ) e. ( C ^o B ) ) ) | 
						
							| 3 |  | oveq2 |  |-  ( A = B -> ( C ^o A ) = ( C ^o B ) ) | 
						
							| 4 | 3 | a1i |  |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A = B -> ( C ^o A ) = ( C ^o B ) ) ) | 
						
							| 5 |  | oeordi |  |-  ( ( A e. On /\ C e. ( On \ 2o ) ) -> ( B e. A -> ( C ^o B ) e. ( C ^o A ) ) ) | 
						
							| 6 | 5 | 3adant2 |  |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( B e. A -> ( C ^o B ) e. ( C ^o A ) ) ) | 
						
							| 7 | 4 6 | orim12d |  |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( ( A = B \/ B e. A ) -> ( ( C ^o A ) = ( C ^o B ) \/ ( C ^o B ) e. ( C ^o A ) ) ) ) | 
						
							| 8 | 7 | con3d |  |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( -. ( ( C ^o A ) = ( C ^o B ) \/ ( C ^o B ) e. ( C ^o A ) ) -> -. ( A = B \/ B e. A ) ) ) | 
						
							| 9 |  | eldifi |  |-  ( C e. ( On \ 2o ) -> C e. On ) | 
						
							| 10 | 9 | 3ad2ant3 |  |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> C e. On ) | 
						
							| 11 |  | simp1 |  |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> A e. On ) | 
						
							| 12 |  | oecl |  |-  ( ( C e. On /\ A e. On ) -> ( C ^o A ) e. On ) | 
						
							| 13 | 10 11 12 | syl2anc |  |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( C ^o A ) e. On ) | 
						
							| 14 |  | simp2 |  |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> B e. On ) | 
						
							| 15 |  | oecl |  |-  ( ( C e. On /\ B e. On ) -> ( C ^o B ) e. On ) | 
						
							| 16 | 10 14 15 | syl2anc |  |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( C ^o B ) e. On ) | 
						
							| 17 |  | eloni |  |-  ( ( C ^o A ) e. On -> Ord ( C ^o A ) ) | 
						
							| 18 |  | eloni |  |-  ( ( C ^o B ) e. On -> Ord ( C ^o B ) ) | 
						
							| 19 |  | ordtri2 |  |-  ( ( Ord ( C ^o A ) /\ Ord ( C ^o B ) ) -> ( ( C ^o A ) e. ( C ^o B ) <-> -. ( ( C ^o A ) = ( C ^o B ) \/ ( C ^o B ) e. ( C ^o A ) ) ) ) | 
						
							| 20 | 17 18 19 | syl2an |  |-  ( ( ( C ^o A ) e. On /\ ( C ^o B ) e. On ) -> ( ( C ^o A ) e. ( C ^o B ) <-> -. ( ( C ^o A ) = ( C ^o B ) \/ ( C ^o B ) e. ( C ^o A ) ) ) ) | 
						
							| 21 | 13 16 20 | syl2anc |  |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( ( C ^o A ) e. ( C ^o B ) <-> -. ( ( C ^o A ) = ( C ^o B ) \/ ( C ^o B ) e. ( C ^o A ) ) ) ) | 
						
							| 22 |  | eloni |  |-  ( A e. On -> Ord A ) | 
						
							| 23 |  | eloni |  |-  ( B e. On -> Ord B ) | 
						
							| 24 |  | ordtri2 |  |-  ( ( Ord A /\ Ord B ) -> ( A e. B <-> -. ( A = B \/ B e. A ) ) ) | 
						
							| 25 | 22 23 24 | syl2an |  |-  ( ( A e. On /\ B e. On ) -> ( A e. B <-> -. ( A = B \/ B e. A ) ) ) | 
						
							| 26 | 25 | 3adant3 |  |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A e. B <-> -. ( A = B \/ B e. A ) ) ) | 
						
							| 27 | 8 21 26 | 3imtr4d |  |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( ( C ^o A ) e. ( C ^o B ) -> A e. B ) ) | 
						
							| 28 | 2 27 | impbid |  |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A e. B <-> ( C ^o A ) e. ( C ^o B ) ) ) |