Metamath Proof Explorer


Theorem oesuc

Description: Ordinal exponentiation with a successor exponent. Definition 8.30 of TakeutiZaring p. 67. (Contributed by NM, 31-Dec-2004) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion oesuc
|- ( ( A e. On /\ B e. On ) -> ( A ^o suc B ) = ( ( A ^o B ) .o A ) )

Proof

Step Hyp Ref Expression
1 limon
 |-  Lim On
2 rdgsuc
 |-  ( B e. On -> ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` suc B ) = ( ( x e. _V |-> ( x .o A ) ) ` ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) )
3 1 2 oesuclem
 |-  ( ( A e. On /\ B e. On ) -> ( A ^o suc B ) = ( ( A ^o B ) .o A ) )