Step |
Hyp |
Ref |
Expression |
1 |
|
oveq12 |
|- ( ( A = (/) /\ B = (/) ) -> ( A ^o B ) = ( (/) ^o (/) ) ) |
2 |
|
oe0m0 |
|- ( (/) ^o (/) ) = 1o |
3 |
1 2
|
eqtrdi |
|- ( ( A = (/) /\ B = (/) ) -> ( A ^o B ) = 1o ) |
4 |
|
fveq2 |
|- ( B = (/) -> ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` (/) ) ) |
5 |
|
1oex |
|- 1o e. _V |
6 |
5
|
rdg0 |
|- ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` (/) ) = 1o |
7 |
4 6
|
eqtrdi |
|- ( B = (/) -> ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) = 1o ) |
8 |
|
inteq |
|- ( B = (/) -> |^| B = |^| (/) ) |
9 |
|
int0 |
|- |^| (/) = _V |
10 |
8 9
|
eqtrdi |
|- ( B = (/) -> |^| B = _V ) |
11 |
7 10
|
ineq12d |
|- ( B = (/) -> ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) = ( 1o i^i _V ) ) |
12 |
|
inv1 |
|- ( 1o i^i _V ) = 1o |
13 |
12
|
a1i |
|- ( A = (/) -> ( 1o i^i _V ) = 1o ) |
14 |
11 13
|
sylan9eqr |
|- ( ( A = (/) /\ B = (/) ) -> ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) = 1o ) |
15 |
3 14
|
eqtr4d |
|- ( ( A = (/) /\ B = (/) ) -> ( A ^o B ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) ) |
16 |
|
oveq1 |
|- ( A = (/) -> ( A ^o B ) = ( (/) ^o B ) ) |
17 |
|
oe0m1 |
|- ( B e. On -> ( (/) e. B <-> ( (/) ^o B ) = (/) ) ) |
18 |
17
|
biimpa |
|- ( ( B e. On /\ (/) e. B ) -> ( (/) ^o B ) = (/) ) |
19 |
16 18
|
sylan9eqr |
|- ( ( ( B e. On /\ (/) e. B ) /\ A = (/) ) -> ( A ^o B ) = (/) ) |
20 |
19
|
an32s |
|- ( ( ( B e. On /\ A = (/) ) /\ (/) e. B ) -> ( A ^o B ) = (/) ) |
21 |
|
int0el |
|- ( (/) e. B -> |^| B = (/) ) |
22 |
21
|
ineq2d |
|- ( (/) e. B -> ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i (/) ) ) |
23 |
|
in0 |
|- ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i (/) ) = (/) |
24 |
22 23
|
eqtrdi |
|- ( (/) e. B -> ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) = (/) ) |
25 |
24
|
adantl |
|- ( ( ( B e. On /\ A = (/) ) /\ (/) e. B ) -> ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) = (/) ) |
26 |
20 25
|
eqtr4d |
|- ( ( ( B e. On /\ A = (/) ) /\ (/) e. B ) -> ( A ^o B ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) ) |
27 |
15 26
|
oe0lem |
|- ( ( B e. On /\ A = (/) ) -> ( A ^o B ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) ) |
28 |
|
inteq |
|- ( A = (/) -> |^| A = |^| (/) ) |
29 |
28 9
|
eqtrdi |
|- ( A = (/) -> |^| A = _V ) |
30 |
29
|
difeq2d |
|- ( A = (/) -> ( _V \ |^| A ) = ( _V \ _V ) ) |
31 |
|
difid |
|- ( _V \ _V ) = (/) |
32 |
30 31
|
eqtrdi |
|- ( A = (/) -> ( _V \ |^| A ) = (/) ) |
33 |
32
|
uneq2d |
|- ( A = (/) -> ( |^| B u. ( _V \ |^| A ) ) = ( |^| B u. (/) ) ) |
34 |
|
uncom |
|- ( |^| B u. ( _V \ |^| A ) ) = ( ( _V \ |^| A ) u. |^| B ) |
35 |
|
un0 |
|- ( |^| B u. (/) ) = |^| B |
36 |
33 34 35
|
3eqtr3g |
|- ( A = (/) -> ( ( _V \ |^| A ) u. |^| B ) = |^| B ) |
37 |
36
|
adantl |
|- ( ( B e. On /\ A = (/) ) -> ( ( _V \ |^| A ) u. |^| B ) = |^| B ) |
38 |
37
|
ineq2d |
|- ( ( B e. On /\ A = (/) ) -> ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i ( ( _V \ |^| A ) u. |^| B ) ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) ) |
39 |
27 38
|
eqtr4d |
|- ( ( B e. On /\ A = (/) ) -> ( A ^o B ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i ( ( _V \ |^| A ) u. |^| B ) ) ) |
40 |
|
oevn0 |
|- ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> ( A ^o B ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) |
41 |
|
int0el |
|- ( (/) e. A -> |^| A = (/) ) |
42 |
41
|
difeq2d |
|- ( (/) e. A -> ( _V \ |^| A ) = ( _V \ (/) ) ) |
43 |
|
dif0 |
|- ( _V \ (/) ) = _V |
44 |
42 43
|
eqtrdi |
|- ( (/) e. A -> ( _V \ |^| A ) = _V ) |
45 |
44
|
uneq2d |
|- ( (/) e. A -> ( |^| B u. ( _V \ |^| A ) ) = ( |^| B u. _V ) ) |
46 |
|
unv |
|- ( |^| B u. _V ) = _V |
47 |
45 34 46
|
3eqtr3g |
|- ( (/) e. A -> ( ( _V \ |^| A ) u. |^| B ) = _V ) |
48 |
47
|
adantl |
|- ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> ( ( _V \ |^| A ) u. |^| B ) = _V ) |
49 |
48
|
ineq2d |
|- ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i ( ( _V \ |^| A ) u. |^| B ) ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i _V ) ) |
50 |
|
inv1 |
|- ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i _V ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) |
51 |
49 50
|
eqtr2di |
|- ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i ( ( _V \ |^| A ) u. |^| B ) ) ) |
52 |
40 51
|
eqtrd |
|- ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> ( A ^o B ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i ( ( _V \ |^| A ) u. |^| B ) ) ) |
53 |
39 52
|
oe0lem |
|- ( ( A e. On /\ B e. On ) -> ( A ^o B ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i ( ( _V \ |^| A ) u. |^| B ) ) ) |