| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq12 |  |-  ( ( A = (/) /\ B = (/) ) -> ( A ^o B ) = ( (/) ^o (/) ) ) | 
						
							| 2 |  | oe0m0 |  |-  ( (/) ^o (/) ) = 1o | 
						
							| 3 | 1 2 | eqtrdi |  |-  ( ( A = (/) /\ B = (/) ) -> ( A ^o B ) = 1o ) | 
						
							| 4 |  | fveq2 |  |-  ( B = (/) -> ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` (/) ) ) | 
						
							| 5 |  | 1oex |  |-  1o e. _V | 
						
							| 6 | 5 | rdg0 |  |-  ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` (/) ) = 1o | 
						
							| 7 | 4 6 | eqtrdi |  |-  ( B = (/) -> ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) = 1o ) | 
						
							| 8 |  | inteq |  |-  ( B = (/) -> |^| B = |^| (/) ) | 
						
							| 9 |  | int0 |  |-  |^| (/) = _V | 
						
							| 10 | 8 9 | eqtrdi |  |-  ( B = (/) -> |^| B = _V ) | 
						
							| 11 | 7 10 | ineq12d |  |-  ( B = (/) -> ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) = ( 1o i^i _V ) ) | 
						
							| 12 |  | inv1 |  |-  ( 1o i^i _V ) = 1o | 
						
							| 13 | 12 | a1i |  |-  ( A = (/) -> ( 1o i^i _V ) = 1o ) | 
						
							| 14 | 11 13 | sylan9eqr |  |-  ( ( A = (/) /\ B = (/) ) -> ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) = 1o ) | 
						
							| 15 | 3 14 | eqtr4d |  |-  ( ( A = (/) /\ B = (/) ) -> ( A ^o B ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) ) | 
						
							| 16 |  | oveq1 |  |-  ( A = (/) -> ( A ^o B ) = ( (/) ^o B ) ) | 
						
							| 17 |  | oe0m1 |  |-  ( B e. On -> ( (/) e. B <-> ( (/) ^o B ) = (/) ) ) | 
						
							| 18 | 17 | biimpa |  |-  ( ( B e. On /\ (/) e. B ) -> ( (/) ^o B ) = (/) ) | 
						
							| 19 | 16 18 | sylan9eqr |  |-  ( ( ( B e. On /\ (/) e. B ) /\ A = (/) ) -> ( A ^o B ) = (/) ) | 
						
							| 20 | 19 | an32s |  |-  ( ( ( B e. On /\ A = (/) ) /\ (/) e. B ) -> ( A ^o B ) = (/) ) | 
						
							| 21 |  | int0el |  |-  ( (/) e. B -> |^| B = (/) ) | 
						
							| 22 | 21 | ineq2d |  |-  ( (/) e. B -> ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i (/) ) ) | 
						
							| 23 |  | in0 |  |-  ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i (/) ) = (/) | 
						
							| 24 | 22 23 | eqtrdi |  |-  ( (/) e. B -> ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) = (/) ) | 
						
							| 25 | 24 | adantl |  |-  ( ( ( B e. On /\ A = (/) ) /\ (/) e. B ) -> ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) = (/) ) | 
						
							| 26 | 20 25 | eqtr4d |  |-  ( ( ( B e. On /\ A = (/) ) /\ (/) e. B ) -> ( A ^o B ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) ) | 
						
							| 27 | 15 26 | oe0lem |  |-  ( ( B e. On /\ A = (/) ) -> ( A ^o B ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) ) | 
						
							| 28 |  | inteq |  |-  ( A = (/) -> |^| A = |^| (/) ) | 
						
							| 29 | 28 9 | eqtrdi |  |-  ( A = (/) -> |^| A = _V ) | 
						
							| 30 | 29 | difeq2d |  |-  ( A = (/) -> ( _V \ |^| A ) = ( _V \ _V ) ) | 
						
							| 31 |  | difid |  |-  ( _V \ _V ) = (/) | 
						
							| 32 | 30 31 | eqtrdi |  |-  ( A = (/) -> ( _V \ |^| A ) = (/) ) | 
						
							| 33 | 32 | uneq2d |  |-  ( A = (/) -> ( |^| B u. ( _V \ |^| A ) ) = ( |^| B u. (/) ) ) | 
						
							| 34 |  | uncom |  |-  ( |^| B u. ( _V \ |^| A ) ) = ( ( _V \ |^| A ) u. |^| B ) | 
						
							| 35 |  | un0 |  |-  ( |^| B u. (/) ) = |^| B | 
						
							| 36 | 33 34 35 | 3eqtr3g |  |-  ( A = (/) -> ( ( _V \ |^| A ) u. |^| B ) = |^| B ) | 
						
							| 37 | 36 | adantl |  |-  ( ( B e. On /\ A = (/) ) -> ( ( _V \ |^| A ) u. |^| B ) = |^| B ) | 
						
							| 38 | 37 | ineq2d |  |-  ( ( B e. On /\ A = (/) ) -> ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i ( ( _V \ |^| A ) u. |^| B ) ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i |^| B ) ) | 
						
							| 39 | 27 38 | eqtr4d |  |-  ( ( B e. On /\ A = (/) ) -> ( A ^o B ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i ( ( _V \ |^| A ) u. |^| B ) ) ) | 
						
							| 40 |  | oevn0 |  |-  ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> ( A ^o B ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) | 
						
							| 41 |  | int0el |  |-  ( (/) e. A -> |^| A = (/) ) | 
						
							| 42 | 41 | difeq2d |  |-  ( (/) e. A -> ( _V \ |^| A ) = ( _V \ (/) ) ) | 
						
							| 43 |  | dif0 |  |-  ( _V \ (/) ) = _V | 
						
							| 44 | 42 43 | eqtrdi |  |-  ( (/) e. A -> ( _V \ |^| A ) = _V ) | 
						
							| 45 | 44 | uneq2d |  |-  ( (/) e. A -> ( |^| B u. ( _V \ |^| A ) ) = ( |^| B u. _V ) ) | 
						
							| 46 |  | unv |  |-  ( |^| B u. _V ) = _V | 
						
							| 47 | 45 34 46 | 3eqtr3g |  |-  ( (/) e. A -> ( ( _V \ |^| A ) u. |^| B ) = _V ) | 
						
							| 48 | 47 | adantl |  |-  ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> ( ( _V \ |^| A ) u. |^| B ) = _V ) | 
						
							| 49 | 48 | ineq2d |  |-  ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i ( ( _V \ |^| A ) u. |^| B ) ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i _V ) ) | 
						
							| 50 |  | inv1 |  |-  ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i _V ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) | 
						
							| 51 | 49 50 | eqtr2di |  |-  ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i ( ( _V \ |^| A ) u. |^| B ) ) ) | 
						
							| 52 | 40 51 | eqtrd |  |-  ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> ( A ^o B ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i ( ( _V \ |^| A ) u. |^| B ) ) ) | 
						
							| 53 | 39 52 | oe0lem |  |-  ( ( A e. On /\ B e. On ) -> ( A ^o B ) = ( ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) i^i ( ( _V \ |^| A ) u. |^| B ) ) ) |