Step |
Hyp |
Ref |
Expression |
1 |
|
on0eln0 |
|- ( A e. On -> ( (/) e. A <-> A =/= (/) ) ) |
2 |
|
df-ne |
|- ( A =/= (/) <-> -. A = (/) ) |
3 |
1 2
|
bitrdi |
|- ( A e. On -> ( (/) e. A <-> -. A = (/) ) ) |
4 |
3
|
adantr |
|- ( ( A e. On /\ B e. On ) -> ( (/) e. A <-> -. A = (/) ) ) |
5 |
|
oev |
|- ( ( A e. On /\ B e. On ) -> ( A ^o B ) = if ( A = (/) , ( 1o \ B ) , ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) ) |
6 |
|
iffalse |
|- ( -. A = (/) -> if ( A = (/) , ( 1o \ B ) , ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) |
7 |
5 6
|
sylan9eq |
|- ( ( ( A e. On /\ B e. On ) /\ -. A = (/) ) -> ( A ^o B ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) |
8 |
7
|
ex |
|- ( ( A e. On /\ B e. On ) -> ( -. A = (/) -> ( A ^o B ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) ) |
9 |
4 8
|
sylbid |
|- ( ( A e. On /\ B e. On ) -> ( (/) e. A -> ( A ^o B ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) ) |
10 |
9
|
imp |
|- ( ( ( A e. On /\ B e. On ) /\ (/) e. A ) -> ( A ^o B ) = ( rec ( ( x e. _V |-> ( x .o A ) ) , 1o ) ` B ) ) |