Metamath Proof Explorer


Theorem oeword

Description: Weak ordering property of ordinal exponentiation. (Contributed by NM, 6-Jan-2005) (Revised by Mario Carneiro, 24-May-2015)

Ref Expression
Assertion oeword
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A C_ B <-> ( C ^o A ) C_ ( C ^o B ) ) )

Proof

Step Hyp Ref Expression
1 oeord
 |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A e. B <-> ( C ^o A ) e. ( C ^o B ) ) )
2 oecan
 |-  ( ( C e. ( On \ 2o ) /\ A e. On /\ B e. On ) -> ( ( C ^o A ) = ( C ^o B ) <-> A = B ) )
3 2 3coml
 |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( ( C ^o A ) = ( C ^o B ) <-> A = B ) )
4 3 bicomd
 |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A = B <-> ( C ^o A ) = ( C ^o B ) ) )
5 1 4 orbi12d
 |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( ( A e. B \/ A = B ) <-> ( ( C ^o A ) e. ( C ^o B ) \/ ( C ^o A ) = ( C ^o B ) ) ) )
6 onsseleq
 |-  ( ( A e. On /\ B e. On ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) )
7 6 3adant3
 |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) )
8 eldifi
 |-  ( C e. ( On \ 2o ) -> C e. On )
9 id
 |-  ( ( A e. On /\ B e. On ) -> ( A e. On /\ B e. On ) )
10 oecl
 |-  ( ( C e. On /\ A e. On ) -> ( C ^o A ) e. On )
11 oecl
 |-  ( ( C e. On /\ B e. On ) -> ( C ^o B ) e. On )
12 10 11 anim12dan
 |-  ( ( C e. On /\ ( A e. On /\ B e. On ) ) -> ( ( C ^o A ) e. On /\ ( C ^o B ) e. On ) )
13 onsseleq
 |-  ( ( ( C ^o A ) e. On /\ ( C ^o B ) e. On ) -> ( ( C ^o A ) C_ ( C ^o B ) <-> ( ( C ^o A ) e. ( C ^o B ) \/ ( C ^o A ) = ( C ^o B ) ) ) )
14 12 13 syl
 |-  ( ( C e. On /\ ( A e. On /\ B e. On ) ) -> ( ( C ^o A ) C_ ( C ^o B ) <-> ( ( C ^o A ) e. ( C ^o B ) \/ ( C ^o A ) = ( C ^o B ) ) ) )
15 8 9 14 syl2anr
 |-  ( ( ( A e. On /\ B e. On ) /\ C e. ( On \ 2o ) ) -> ( ( C ^o A ) C_ ( C ^o B ) <-> ( ( C ^o A ) e. ( C ^o B ) \/ ( C ^o A ) = ( C ^o B ) ) ) )
16 15 3impa
 |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( ( C ^o A ) C_ ( C ^o B ) <-> ( ( C ^o A ) e. ( C ^o B ) \/ ( C ^o A ) = ( C ^o B ) ) ) )
17 5 7 16 3bitr4d
 |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A C_ B <-> ( C ^o A ) C_ ( C ^o B ) ) )