| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oeord |  |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A e. B <-> ( C ^o A ) e. ( C ^o B ) ) ) | 
						
							| 2 |  | oecan |  |-  ( ( C e. ( On \ 2o ) /\ A e. On /\ B e. On ) -> ( ( C ^o A ) = ( C ^o B ) <-> A = B ) ) | 
						
							| 3 | 2 | 3coml |  |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( ( C ^o A ) = ( C ^o B ) <-> A = B ) ) | 
						
							| 4 | 3 | bicomd |  |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A = B <-> ( C ^o A ) = ( C ^o B ) ) ) | 
						
							| 5 | 1 4 | orbi12d |  |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( ( A e. B \/ A = B ) <-> ( ( C ^o A ) e. ( C ^o B ) \/ ( C ^o A ) = ( C ^o B ) ) ) ) | 
						
							| 6 |  | onsseleq |  |-  ( ( A e. On /\ B e. On ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) ) | 
						
							| 7 | 6 | 3adant3 |  |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) ) | 
						
							| 8 |  | eldifi |  |-  ( C e. ( On \ 2o ) -> C e. On ) | 
						
							| 9 |  | id |  |-  ( ( A e. On /\ B e. On ) -> ( A e. On /\ B e. On ) ) | 
						
							| 10 |  | oecl |  |-  ( ( C e. On /\ A e. On ) -> ( C ^o A ) e. On ) | 
						
							| 11 |  | oecl |  |-  ( ( C e. On /\ B e. On ) -> ( C ^o B ) e. On ) | 
						
							| 12 | 10 11 | anim12dan |  |-  ( ( C e. On /\ ( A e. On /\ B e. On ) ) -> ( ( C ^o A ) e. On /\ ( C ^o B ) e. On ) ) | 
						
							| 13 |  | onsseleq |  |-  ( ( ( C ^o A ) e. On /\ ( C ^o B ) e. On ) -> ( ( C ^o A ) C_ ( C ^o B ) <-> ( ( C ^o A ) e. ( C ^o B ) \/ ( C ^o A ) = ( C ^o B ) ) ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( C e. On /\ ( A e. On /\ B e. On ) ) -> ( ( C ^o A ) C_ ( C ^o B ) <-> ( ( C ^o A ) e. ( C ^o B ) \/ ( C ^o A ) = ( C ^o B ) ) ) ) | 
						
							| 15 | 8 9 14 | syl2anr |  |-  ( ( ( A e. On /\ B e. On ) /\ C e. ( On \ 2o ) ) -> ( ( C ^o A ) C_ ( C ^o B ) <-> ( ( C ^o A ) e. ( C ^o B ) \/ ( C ^o A ) = ( C ^o B ) ) ) ) | 
						
							| 16 | 15 | 3impa |  |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( ( C ^o A ) C_ ( C ^o B ) <-> ( ( C ^o A ) e. ( C ^o B ) \/ ( C ^o A ) = ( C ^o B ) ) ) ) | 
						
							| 17 | 5 7 16 | 3bitr4d |  |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A C_ B <-> ( C ^o A ) C_ ( C ^o B ) ) ) |