Step |
Hyp |
Ref |
Expression |
1 |
|
oeord |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A e. B <-> ( C ^o A ) e. ( C ^o B ) ) ) |
2 |
|
oecan |
|- ( ( C e. ( On \ 2o ) /\ A e. On /\ B e. On ) -> ( ( C ^o A ) = ( C ^o B ) <-> A = B ) ) |
3 |
2
|
3coml |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( ( C ^o A ) = ( C ^o B ) <-> A = B ) ) |
4 |
3
|
bicomd |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A = B <-> ( C ^o A ) = ( C ^o B ) ) ) |
5 |
1 4
|
orbi12d |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( ( A e. B \/ A = B ) <-> ( ( C ^o A ) e. ( C ^o B ) \/ ( C ^o A ) = ( C ^o B ) ) ) ) |
6 |
|
onsseleq |
|- ( ( A e. On /\ B e. On ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) ) |
7 |
6
|
3adant3 |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A C_ B <-> ( A e. B \/ A = B ) ) ) |
8 |
|
eldifi |
|- ( C e. ( On \ 2o ) -> C e. On ) |
9 |
|
id |
|- ( ( A e. On /\ B e. On ) -> ( A e. On /\ B e. On ) ) |
10 |
|
oecl |
|- ( ( C e. On /\ A e. On ) -> ( C ^o A ) e. On ) |
11 |
|
oecl |
|- ( ( C e. On /\ B e. On ) -> ( C ^o B ) e. On ) |
12 |
10 11
|
anim12dan |
|- ( ( C e. On /\ ( A e. On /\ B e. On ) ) -> ( ( C ^o A ) e. On /\ ( C ^o B ) e. On ) ) |
13 |
|
onsseleq |
|- ( ( ( C ^o A ) e. On /\ ( C ^o B ) e. On ) -> ( ( C ^o A ) C_ ( C ^o B ) <-> ( ( C ^o A ) e. ( C ^o B ) \/ ( C ^o A ) = ( C ^o B ) ) ) ) |
14 |
12 13
|
syl |
|- ( ( C e. On /\ ( A e. On /\ B e. On ) ) -> ( ( C ^o A ) C_ ( C ^o B ) <-> ( ( C ^o A ) e. ( C ^o B ) \/ ( C ^o A ) = ( C ^o B ) ) ) ) |
15 |
8 9 14
|
syl2anr |
|- ( ( ( A e. On /\ B e. On ) /\ C e. ( On \ 2o ) ) -> ( ( C ^o A ) C_ ( C ^o B ) <-> ( ( C ^o A ) e. ( C ^o B ) \/ ( C ^o A ) = ( C ^o B ) ) ) ) |
16 |
15
|
3impa |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( ( C ^o A ) C_ ( C ^o B ) <-> ( ( C ^o A ) e. ( C ^o B ) \/ ( C ^o A ) = ( C ^o B ) ) ) ) |
17 |
5 7 16
|
3bitr4d |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A C_ B <-> ( C ^o A ) C_ ( C ^o B ) ) ) |