Step |
Hyp |
Ref |
Expression |
1 |
|
eloni |
|- ( C e. On -> Ord C ) |
2 |
|
ordgt0ge1 |
|- ( Ord C -> ( (/) e. C <-> 1o C_ C ) ) |
3 |
1 2
|
syl |
|- ( C e. On -> ( (/) e. C <-> 1o C_ C ) ) |
4 |
|
1on |
|- 1o e. On |
5 |
|
onsseleq |
|- ( ( 1o e. On /\ C e. On ) -> ( 1o C_ C <-> ( 1o e. C \/ 1o = C ) ) ) |
6 |
4 5
|
mpan |
|- ( C e. On -> ( 1o C_ C <-> ( 1o e. C \/ 1o = C ) ) ) |
7 |
3 6
|
bitrd |
|- ( C e. On -> ( (/) e. C <-> ( 1o e. C \/ 1o = C ) ) ) |
8 |
7
|
3ad2ant3 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( (/) e. C <-> ( 1o e. C \/ 1o = C ) ) ) |
9 |
|
ondif2 |
|- ( C e. ( On \ 2o ) <-> ( C e. On /\ 1o e. C ) ) |
10 |
|
oeword |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A C_ B <-> ( C ^o A ) C_ ( C ^o B ) ) ) |
11 |
10
|
biimpd |
|- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) |
12 |
11
|
3expia |
|- ( ( A e. On /\ B e. On ) -> ( C e. ( On \ 2o ) -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) |
13 |
9 12
|
syl5bir |
|- ( ( A e. On /\ B e. On ) -> ( ( C e. On /\ 1o e. C ) -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) |
14 |
13
|
expd |
|- ( ( A e. On /\ B e. On ) -> ( C e. On -> ( 1o e. C -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) ) |
15 |
14
|
3impia |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( 1o e. C -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) |
16 |
|
oe1m |
|- ( A e. On -> ( 1o ^o A ) = 1o ) |
17 |
16
|
adantr |
|- ( ( A e. On /\ B e. On ) -> ( 1o ^o A ) = 1o ) |
18 |
|
oe1m |
|- ( B e. On -> ( 1o ^o B ) = 1o ) |
19 |
18
|
adantl |
|- ( ( A e. On /\ B e. On ) -> ( 1o ^o B ) = 1o ) |
20 |
17 19
|
eqtr4d |
|- ( ( A e. On /\ B e. On ) -> ( 1o ^o A ) = ( 1o ^o B ) ) |
21 |
|
eqimss |
|- ( ( 1o ^o A ) = ( 1o ^o B ) -> ( 1o ^o A ) C_ ( 1o ^o B ) ) |
22 |
20 21
|
syl |
|- ( ( A e. On /\ B e. On ) -> ( 1o ^o A ) C_ ( 1o ^o B ) ) |
23 |
|
oveq1 |
|- ( 1o = C -> ( 1o ^o A ) = ( C ^o A ) ) |
24 |
|
oveq1 |
|- ( 1o = C -> ( 1o ^o B ) = ( C ^o B ) ) |
25 |
23 24
|
sseq12d |
|- ( 1o = C -> ( ( 1o ^o A ) C_ ( 1o ^o B ) <-> ( C ^o A ) C_ ( C ^o B ) ) ) |
26 |
22 25
|
syl5ibcom |
|- ( ( A e. On /\ B e. On ) -> ( 1o = C -> ( C ^o A ) C_ ( C ^o B ) ) ) |
27 |
26
|
3adant3 |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( 1o = C -> ( C ^o A ) C_ ( C ^o B ) ) ) |
28 |
27
|
a1dd |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( 1o = C -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) |
29 |
15 28
|
jaod |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( 1o e. C \/ 1o = C ) -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) |
30 |
8 29
|
sylbid |
|- ( ( A e. On /\ B e. On /\ C e. On ) -> ( (/) e. C -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) |
31 |
30
|
imp |
|- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) |