| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eloni |  |-  ( C e. On -> Ord C ) | 
						
							| 2 |  | ordgt0ge1 |  |-  ( Ord C -> ( (/) e. C <-> 1o C_ C ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( C e. On -> ( (/) e. C <-> 1o C_ C ) ) | 
						
							| 4 |  | 1on |  |-  1o e. On | 
						
							| 5 |  | onsseleq |  |-  ( ( 1o e. On /\ C e. On ) -> ( 1o C_ C <-> ( 1o e. C \/ 1o = C ) ) ) | 
						
							| 6 | 4 5 | mpan |  |-  ( C e. On -> ( 1o C_ C <-> ( 1o e. C \/ 1o = C ) ) ) | 
						
							| 7 | 3 6 | bitrd |  |-  ( C e. On -> ( (/) e. C <-> ( 1o e. C \/ 1o = C ) ) ) | 
						
							| 8 | 7 | 3ad2ant3 |  |-  ( ( A e. On /\ B e. On /\ C e. On ) -> ( (/) e. C <-> ( 1o e. C \/ 1o = C ) ) ) | 
						
							| 9 |  | ondif2 |  |-  ( C e. ( On \ 2o ) <-> ( C e. On /\ 1o e. C ) ) | 
						
							| 10 |  | oeword |  |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A C_ B <-> ( C ^o A ) C_ ( C ^o B ) ) ) | 
						
							| 11 | 10 | biimpd |  |-  ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) | 
						
							| 12 | 11 | 3expia |  |-  ( ( A e. On /\ B e. On ) -> ( C e. ( On \ 2o ) -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) | 
						
							| 13 | 9 12 | biimtrrid |  |-  ( ( A e. On /\ B e. On ) -> ( ( C e. On /\ 1o e. C ) -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) | 
						
							| 14 | 13 | expd |  |-  ( ( A e. On /\ B e. On ) -> ( C e. On -> ( 1o e. C -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) ) | 
						
							| 15 | 14 | 3impia |  |-  ( ( A e. On /\ B e. On /\ C e. On ) -> ( 1o e. C -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) | 
						
							| 16 |  | oe1m |  |-  ( A e. On -> ( 1o ^o A ) = 1o ) | 
						
							| 17 | 16 | adantr |  |-  ( ( A e. On /\ B e. On ) -> ( 1o ^o A ) = 1o ) | 
						
							| 18 |  | oe1m |  |-  ( B e. On -> ( 1o ^o B ) = 1o ) | 
						
							| 19 | 18 | adantl |  |-  ( ( A e. On /\ B e. On ) -> ( 1o ^o B ) = 1o ) | 
						
							| 20 | 17 19 | eqtr4d |  |-  ( ( A e. On /\ B e. On ) -> ( 1o ^o A ) = ( 1o ^o B ) ) | 
						
							| 21 |  | eqimss |  |-  ( ( 1o ^o A ) = ( 1o ^o B ) -> ( 1o ^o A ) C_ ( 1o ^o B ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( A e. On /\ B e. On ) -> ( 1o ^o A ) C_ ( 1o ^o B ) ) | 
						
							| 23 |  | oveq1 |  |-  ( 1o = C -> ( 1o ^o A ) = ( C ^o A ) ) | 
						
							| 24 |  | oveq1 |  |-  ( 1o = C -> ( 1o ^o B ) = ( C ^o B ) ) | 
						
							| 25 | 23 24 | sseq12d |  |-  ( 1o = C -> ( ( 1o ^o A ) C_ ( 1o ^o B ) <-> ( C ^o A ) C_ ( C ^o B ) ) ) | 
						
							| 26 | 22 25 | syl5ibcom |  |-  ( ( A e. On /\ B e. On ) -> ( 1o = C -> ( C ^o A ) C_ ( C ^o B ) ) ) | 
						
							| 27 | 26 | 3adant3 |  |-  ( ( A e. On /\ B e. On /\ C e. On ) -> ( 1o = C -> ( C ^o A ) C_ ( C ^o B ) ) ) | 
						
							| 28 | 27 | a1dd |  |-  ( ( A e. On /\ B e. On /\ C e. On ) -> ( 1o = C -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) | 
						
							| 29 | 15 28 | jaod |  |-  ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( 1o e. C \/ 1o = C ) -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) | 
						
							| 30 | 8 29 | sylbid |  |-  ( ( A e. On /\ B e. On /\ C e. On ) -> ( (/) e. C -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) | 
						
							| 31 | 30 | imp |  |-  ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) |