Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
2 |
|
odd2np1 |
|- ( N e. ZZ -> ( -. 2 || N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
3 |
1 2
|
syl |
|- ( N e. NN -> ( -. 2 || N <-> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) ) |
4 |
3
|
biimpa |
|- ( ( N e. NN /\ -. 2 || N ) -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) |
5 |
4
|
3adant1 |
|- ( ( A e. CC /\ N e. NN /\ -. 2 || N ) -> E. n e. ZZ ( ( 2 x. n ) + 1 ) = N ) |
6 |
|
simpl1 |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> A e. CC ) |
7 |
|
simprr |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( 2 x. n ) + 1 ) = N ) |
8 |
|
simpl2 |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> N e. NN ) |
9 |
8
|
nncnd |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> N e. CC ) |
10 |
|
1cnd |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> 1 e. CC ) |
11 |
|
2z |
|- 2 e. ZZ |
12 |
|
simprl |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> n e. ZZ ) |
13 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ n e. ZZ ) -> ( 2 x. n ) e. ZZ ) |
14 |
11 12 13
|
sylancr |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( 2 x. n ) e. ZZ ) |
15 |
14
|
zcnd |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( 2 x. n ) e. CC ) |
16 |
9 10 15
|
subadd2d |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( N - 1 ) = ( 2 x. n ) <-> ( ( 2 x. n ) + 1 ) = N ) ) |
17 |
7 16
|
mpbird |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( N - 1 ) = ( 2 x. n ) ) |
18 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
19 |
8 18
|
syl |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( N - 1 ) e. NN0 ) |
20 |
17 19
|
eqeltrrd |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( 2 x. n ) e. NN0 ) |
21 |
6 20
|
expcld |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( A ^ ( 2 x. n ) ) e. CC ) |
22 |
21 6
|
mulneg2d |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( A ^ ( 2 x. n ) ) x. -u A ) = -u ( ( A ^ ( 2 x. n ) ) x. A ) ) |
23 |
|
sqneg |
|- ( A e. CC -> ( -u A ^ 2 ) = ( A ^ 2 ) ) |
24 |
6 23
|
syl |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ 2 ) = ( A ^ 2 ) ) |
25 |
24
|
oveq1d |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( -u A ^ 2 ) ^ n ) = ( ( A ^ 2 ) ^ n ) ) |
26 |
6
|
negcld |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> -u A e. CC ) |
27 |
|
2rp |
|- 2 e. RR+ |
28 |
27
|
a1i |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> 2 e. RR+ ) |
29 |
12
|
zred |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> n e. RR ) |
30 |
20
|
nn0ge0d |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> 0 <_ ( 2 x. n ) ) |
31 |
28 29 30
|
prodge0rd |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> 0 <_ n ) |
32 |
|
elnn0z |
|- ( n e. NN0 <-> ( n e. ZZ /\ 0 <_ n ) ) |
33 |
12 31 32
|
sylanbrc |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> n e. NN0 ) |
34 |
|
2nn0 |
|- 2 e. NN0 |
35 |
34
|
a1i |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> 2 e. NN0 ) |
36 |
26 33 35
|
expmuld |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ ( 2 x. n ) ) = ( ( -u A ^ 2 ) ^ n ) ) |
37 |
6 33 35
|
expmuld |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( A ^ ( 2 x. n ) ) = ( ( A ^ 2 ) ^ n ) ) |
38 |
25 36 37
|
3eqtr4d |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ ( 2 x. n ) ) = ( A ^ ( 2 x. n ) ) ) |
39 |
38
|
oveq1d |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( -u A ^ ( 2 x. n ) ) x. -u A ) = ( ( A ^ ( 2 x. n ) ) x. -u A ) ) |
40 |
26 20
|
expp1d |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ ( ( 2 x. n ) + 1 ) ) = ( ( -u A ^ ( 2 x. n ) ) x. -u A ) ) |
41 |
7
|
oveq2d |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ ( ( 2 x. n ) + 1 ) ) = ( -u A ^ N ) ) |
42 |
40 41
|
eqtr3d |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( -u A ^ ( 2 x. n ) ) x. -u A ) = ( -u A ^ N ) ) |
43 |
39 42
|
eqtr3d |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( A ^ ( 2 x. n ) ) x. -u A ) = ( -u A ^ N ) ) |
44 |
22 43
|
eqtr3d |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> -u ( ( A ^ ( 2 x. n ) ) x. A ) = ( -u A ^ N ) ) |
45 |
6 20
|
expp1d |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( A ^ ( ( 2 x. n ) + 1 ) ) = ( ( A ^ ( 2 x. n ) ) x. A ) ) |
46 |
7
|
oveq2d |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( A ^ ( ( 2 x. n ) + 1 ) ) = ( A ^ N ) ) |
47 |
45 46
|
eqtr3d |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( ( A ^ ( 2 x. n ) ) x. A ) = ( A ^ N ) ) |
48 |
47
|
negeqd |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> -u ( ( A ^ ( 2 x. n ) ) x. A ) = -u ( A ^ N ) ) |
49 |
44 48
|
eqtr3d |
|- ( ( ( A e. CC /\ N e. NN /\ -. 2 || N ) /\ ( n e. ZZ /\ ( ( 2 x. n ) + 1 ) = N ) ) -> ( -u A ^ N ) = -u ( A ^ N ) ) |
50 |
5 49
|
rexlimddv |
|- ( ( A e. CC /\ N e. NN /\ -. 2 || N ) -> ( -u A ^ N ) = -u ( A ^ N ) ) |