Step |
Hyp |
Ref |
Expression |
1 |
|
ofc1.1 |
|- ( ph -> A e. V ) |
2 |
|
ofc1.2 |
|- ( ph -> B e. W ) |
3 |
|
ofc1.3 |
|- ( ph -> F Fn A ) |
4 |
|
ofc1.4 |
|- ( ( ph /\ X e. A ) -> ( F ` X ) = C ) |
5 |
|
fnconstg |
|- ( B e. W -> ( A X. { B } ) Fn A ) |
6 |
2 5
|
syl |
|- ( ph -> ( A X. { B } ) Fn A ) |
7 |
|
inidm |
|- ( A i^i A ) = A |
8 |
|
fvconst2g |
|- ( ( B e. W /\ X e. A ) -> ( ( A X. { B } ) ` X ) = B ) |
9 |
2 8
|
sylan |
|- ( ( ph /\ X e. A ) -> ( ( A X. { B } ) ` X ) = B ) |
10 |
6 3 1 1 7 9 4
|
ofval |
|- ( ( ph /\ X e. A ) -> ( ( ( A X. { B } ) oF R F ) ` X ) = ( B R C ) ) |