| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ofc12.1 |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | ofc12.2 |  |-  ( ph -> B e. W ) | 
						
							| 3 |  | ofc12.3 |  |-  ( ph -> C e. X ) | 
						
							| 4 | 2 | adantr |  |-  ( ( ph /\ x e. A ) -> B e. W ) | 
						
							| 5 | 3 | adantr |  |-  ( ( ph /\ x e. A ) -> C e. X ) | 
						
							| 6 |  | fconstmpt |  |-  ( A X. { B } ) = ( x e. A |-> B ) | 
						
							| 7 | 6 | a1i |  |-  ( ph -> ( A X. { B } ) = ( x e. A |-> B ) ) | 
						
							| 8 |  | fconstmpt |  |-  ( A X. { C } ) = ( x e. A |-> C ) | 
						
							| 9 | 8 | a1i |  |-  ( ph -> ( A X. { C } ) = ( x e. A |-> C ) ) | 
						
							| 10 | 1 4 5 7 9 | offval2 |  |-  ( ph -> ( ( A X. { B } ) oF R ( A X. { C } ) ) = ( x e. A |-> ( B R C ) ) ) | 
						
							| 11 |  | fconstmpt |  |-  ( A X. { ( B R C ) } ) = ( x e. A |-> ( B R C ) ) | 
						
							| 12 | 10 11 | eqtr4di |  |-  ( ph -> ( ( A X. { B } ) oF R ( A X. { C } ) ) = ( A X. { ( B R C ) } ) ) |