Step |
Hyp |
Ref |
Expression |
1 |
|
ofccat.1 |
|- ( ph -> E e. Word S ) |
2 |
|
ofccat.2 |
|- ( ph -> F e. Word S ) |
3 |
|
ofccat.3 |
|- ( ph -> G e. Word T ) |
4 |
|
ofccat.4 |
|- ( ph -> H e. Word T ) |
5 |
|
ofccat.5 |
|- ( ph -> ( # ` E ) = ( # ` G ) ) |
6 |
|
ofccat.6 |
|- ( ph -> ( # ` F ) = ( # ` H ) ) |
7 |
|
wrdf |
|- ( E e. Word S -> E : ( 0 ..^ ( # ` E ) ) --> S ) |
8 |
|
ffn |
|- ( E : ( 0 ..^ ( # ` E ) ) --> S -> E Fn ( 0 ..^ ( # ` E ) ) ) |
9 |
1 7 8
|
3syl |
|- ( ph -> E Fn ( 0 ..^ ( # ` E ) ) ) |
10 |
|
wrdf |
|- ( G e. Word T -> G : ( 0 ..^ ( # ` G ) ) --> T ) |
11 |
|
ffn |
|- ( G : ( 0 ..^ ( # ` G ) ) --> T -> G Fn ( 0 ..^ ( # ` G ) ) ) |
12 |
3 10 11
|
3syl |
|- ( ph -> G Fn ( 0 ..^ ( # ` G ) ) ) |
13 |
5
|
oveq2d |
|- ( ph -> ( 0 ..^ ( # ` E ) ) = ( 0 ..^ ( # ` G ) ) ) |
14 |
13
|
fneq2d |
|- ( ph -> ( G Fn ( 0 ..^ ( # ` E ) ) <-> G Fn ( 0 ..^ ( # ` G ) ) ) ) |
15 |
12 14
|
mpbird |
|- ( ph -> G Fn ( 0 ..^ ( # ` E ) ) ) |
16 |
|
ovexd |
|- ( ph -> ( 0 ..^ ( # ` E ) ) e. _V ) |
17 |
|
inidm |
|- ( ( 0 ..^ ( # ` E ) ) i^i ( 0 ..^ ( # ` E ) ) ) = ( 0 ..^ ( # ` E ) ) |
18 |
9 15 16 16 17
|
offn |
|- ( ph -> ( E oF R G ) Fn ( 0 ..^ ( # ` E ) ) ) |
19 |
|
hashfn |
|- ( ( E oF R G ) Fn ( 0 ..^ ( # ` E ) ) -> ( # ` ( E oF R G ) ) = ( # ` ( 0 ..^ ( # ` E ) ) ) ) |
20 |
18 19
|
syl |
|- ( ph -> ( # ` ( E oF R G ) ) = ( # ` ( 0 ..^ ( # ` E ) ) ) ) |
21 |
|
wrdfin |
|- ( E e. Word S -> E e. Fin ) |
22 |
|
hashcl |
|- ( E e. Fin -> ( # ` E ) e. NN0 ) |
23 |
1 21 22
|
3syl |
|- ( ph -> ( # ` E ) e. NN0 ) |
24 |
|
hashfzo0 |
|- ( ( # ` E ) e. NN0 -> ( # ` ( 0 ..^ ( # ` E ) ) ) = ( # ` E ) ) |
25 |
23 24
|
syl |
|- ( ph -> ( # ` ( 0 ..^ ( # ` E ) ) ) = ( # ` E ) ) |
26 |
20 25
|
eqtrd |
|- ( ph -> ( # ` ( E oF R G ) ) = ( # ` E ) ) |
27 |
26
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> ( # ` ( E oF R G ) ) = ( # ` E ) ) |
28 |
27
|
oveq2d |
|- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> ( 0 ..^ ( # ` ( E oF R G ) ) ) = ( 0 ..^ ( # ` E ) ) ) |
29 |
28
|
eleq2d |
|- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> ( i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) <-> i e. ( 0 ..^ ( # ` E ) ) ) ) |
30 |
9
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> E Fn ( 0 ..^ ( # ` E ) ) ) |
31 |
15
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> G Fn ( 0 ..^ ( # ` E ) ) ) |
32 |
|
ovexd |
|- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( 0 ..^ ( # ` E ) ) e. _V ) |
33 |
29
|
biimpa |
|- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> i e. ( 0 ..^ ( # ` E ) ) ) |
34 |
|
fnfvof |
|- ( ( ( E Fn ( 0 ..^ ( # ` E ) ) /\ G Fn ( 0 ..^ ( # ` E ) ) ) /\ ( ( 0 ..^ ( # ` E ) ) e. _V /\ i e. ( 0 ..^ ( # ` E ) ) ) ) -> ( ( E oF R G ) ` i ) = ( ( E ` i ) R ( G ` i ) ) ) |
35 |
30 31 32 33 34
|
syl22anc |
|- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( ( E oF R G ) ` i ) = ( ( E ` i ) R ( G ` i ) ) ) |
36 |
26
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( # ` ( E oF R G ) ) = ( # ` E ) ) |
37 |
36
|
oveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( i - ( # ` ( E oF R G ) ) ) = ( i - ( # ` E ) ) ) |
38 |
37
|
fveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( ( F oF R H ) ` ( i - ( # ` ( E oF R G ) ) ) ) = ( ( F oF R H ) ` ( i - ( # ` E ) ) ) ) |
39 |
|
wrdf |
|- ( F e. Word S -> F : ( 0 ..^ ( # ` F ) ) --> S ) |
40 |
|
ffn |
|- ( F : ( 0 ..^ ( # ` F ) ) --> S -> F Fn ( 0 ..^ ( # ` F ) ) ) |
41 |
2 39 40
|
3syl |
|- ( ph -> F Fn ( 0 ..^ ( # ` F ) ) ) |
42 |
41
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> F Fn ( 0 ..^ ( # ` F ) ) ) |
43 |
|
wrdf |
|- ( H e. Word T -> H : ( 0 ..^ ( # ` H ) ) --> T ) |
44 |
|
ffn |
|- ( H : ( 0 ..^ ( # ` H ) ) --> T -> H Fn ( 0 ..^ ( # ` H ) ) ) |
45 |
4 43 44
|
3syl |
|- ( ph -> H Fn ( 0 ..^ ( # ` H ) ) ) |
46 |
6
|
oveq2d |
|- ( ph -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ ( # ` H ) ) ) |
47 |
46
|
fneq2d |
|- ( ph -> ( H Fn ( 0 ..^ ( # ` F ) ) <-> H Fn ( 0 ..^ ( # ` H ) ) ) ) |
48 |
45 47
|
mpbird |
|- ( ph -> H Fn ( 0 ..^ ( # ` F ) ) ) |
49 |
48
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> H Fn ( 0 ..^ ( # ` F ) ) ) |
50 |
|
ovexd |
|- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( 0 ..^ ( # ` F ) ) e. _V ) |
51 |
|
simplr |
|- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) |
52 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) |
53 |
28
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( 0 ..^ ( # ` ( E oF R G ) ) ) = ( 0 ..^ ( # ` E ) ) ) |
54 |
52 53
|
neleqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> -. i e. ( 0 ..^ ( # ` E ) ) ) |
55 |
23
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( # ` E ) e. NN0 ) |
56 |
55
|
nn0zd |
|- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( # ` E ) e. ZZ ) |
57 |
|
wrdfin |
|- ( F e. Word S -> F e. Fin ) |
58 |
|
hashcl |
|- ( F e. Fin -> ( # ` F ) e. NN0 ) |
59 |
2 57 58
|
3syl |
|- ( ph -> ( # ` F ) e. NN0 ) |
60 |
59
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( # ` F ) e. NN0 ) |
61 |
60
|
nn0zd |
|- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( # ` F ) e. ZZ ) |
62 |
|
fzocatel |
|- ( ( ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) /\ -. i e. ( 0 ..^ ( # ` E ) ) ) /\ ( ( # ` E ) e. ZZ /\ ( # ` F ) e. ZZ ) ) -> ( i - ( # ` E ) ) e. ( 0 ..^ ( # ` F ) ) ) |
63 |
51 54 56 61 62
|
syl22anc |
|- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( i - ( # ` E ) ) e. ( 0 ..^ ( # ` F ) ) ) |
64 |
|
fnfvof |
|- ( ( ( F Fn ( 0 ..^ ( # ` F ) ) /\ H Fn ( 0 ..^ ( # ` F ) ) ) /\ ( ( 0 ..^ ( # ` F ) ) e. _V /\ ( i - ( # ` E ) ) e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( F oF R H ) ` ( i - ( # ` E ) ) ) = ( ( F ` ( i - ( # ` E ) ) ) R ( H ` ( i - ( # ` E ) ) ) ) ) |
65 |
42 49 50 63 64
|
syl22anc |
|- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( ( F oF R H ) ` ( i - ( # ` E ) ) ) = ( ( F ` ( i - ( # ` E ) ) ) R ( H ` ( i - ( # ` E ) ) ) ) ) |
66 |
38 65
|
eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( ( F oF R H ) ` ( i - ( # ` ( E oF R G ) ) ) ) = ( ( F ` ( i - ( # ` E ) ) ) R ( H ` ( i - ( # ` E ) ) ) ) ) |
67 |
29 35 66
|
ifbieq12d2 |
|- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> if ( i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) , ( ( E oF R G ) ` i ) , ( ( F oF R H ) ` ( i - ( # ` ( E oF R G ) ) ) ) ) = if ( i e. ( 0 ..^ ( # ` E ) ) , ( ( E ` i ) R ( G ` i ) ) , ( ( F ` ( i - ( # ` E ) ) ) R ( H ` ( i - ( # ` E ) ) ) ) ) ) |
68 |
67
|
mpteq2dva |
|- ( ph -> ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> if ( i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) , ( ( E oF R G ) ` i ) , ( ( F oF R H ) ` ( i - ( # ` ( E oF R G ) ) ) ) ) ) = ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> if ( i e. ( 0 ..^ ( # ` E ) ) , ( ( E ` i ) R ( G ` i ) ) , ( ( F ` ( i - ( # ` E ) ) ) R ( H ` ( i - ( # ` E ) ) ) ) ) ) ) |
69 |
|
ovex |
|- ( E oF R G ) e. _V |
70 |
|
ovex |
|- ( F oF R H ) e. _V |
71 |
|
ccatfval |
|- ( ( ( E oF R G ) e. _V /\ ( F oF R H ) e. _V ) -> ( ( E oF R G ) ++ ( F oF R H ) ) = ( i e. ( 0 ..^ ( ( # ` ( E oF R G ) ) + ( # ` ( F oF R H ) ) ) ) |-> if ( i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) , ( ( E oF R G ) ` i ) , ( ( F oF R H ) ` ( i - ( # ` ( E oF R G ) ) ) ) ) ) ) |
72 |
69 70 71
|
mp2an |
|- ( ( E oF R G ) ++ ( F oF R H ) ) = ( i e. ( 0 ..^ ( ( # ` ( E oF R G ) ) + ( # ` ( F oF R H ) ) ) ) |-> if ( i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) , ( ( E oF R G ) ` i ) , ( ( F oF R H ) ` ( i - ( # ` ( E oF R G ) ) ) ) ) ) |
73 |
|
ovexd |
|- ( ph -> ( 0 ..^ ( # ` F ) ) e. _V ) |
74 |
|
inidm |
|- ( ( 0 ..^ ( # ` F ) ) i^i ( 0 ..^ ( # ` F ) ) ) = ( 0 ..^ ( # ` F ) ) |
75 |
41 48 73 73 74
|
offn |
|- ( ph -> ( F oF R H ) Fn ( 0 ..^ ( # ` F ) ) ) |
76 |
|
hashfn |
|- ( ( F oF R H ) Fn ( 0 ..^ ( # ` F ) ) -> ( # ` ( F oF R H ) ) = ( # ` ( 0 ..^ ( # ` F ) ) ) ) |
77 |
75 76
|
syl |
|- ( ph -> ( # ` ( F oF R H ) ) = ( # ` ( 0 ..^ ( # ` F ) ) ) ) |
78 |
|
hashfzo0 |
|- ( ( # ` F ) e. NN0 -> ( # ` ( 0 ..^ ( # ` F ) ) ) = ( # ` F ) ) |
79 |
59 78
|
syl |
|- ( ph -> ( # ` ( 0 ..^ ( # ` F ) ) ) = ( # ` F ) ) |
80 |
77 79
|
eqtrd |
|- ( ph -> ( # ` ( F oF R H ) ) = ( # ` F ) ) |
81 |
26 80
|
oveq12d |
|- ( ph -> ( ( # ` ( E oF R G ) ) + ( # ` ( F oF R H ) ) ) = ( ( # ` E ) + ( # ` F ) ) ) |
82 |
81
|
oveq2d |
|- ( ph -> ( 0 ..^ ( ( # ` ( E oF R G ) ) + ( # ` ( F oF R H ) ) ) ) = ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) |
83 |
82
|
mpteq1d |
|- ( ph -> ( i e. ( 0 ..^ ( ( # ` ( E oF R G ) ) + ( # ` ( F oF R H ) ) ) ) |-> if ( i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) , ( ( E oF R G ) ` i ) , ( ( F oF R H ) ` ( i - ( # ` ( E oF R G ) ) ) ) ) ) = ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> if ( i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) , ( ( E oF R G ) ` i ) , ( ( F oF R H ) ` ( i - ( # ` ( E oF R G ) ) ) ) ) ) ) |
84 |
72 83
|
eqtrid |
|- ( ph -> ( ( E oF R G ) ++ ( F oF R H ) ) = ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> if ( i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) , ( ( E oF R G ) ` i ) , ( ( F oF R H ) ` ( i - ( # ` ( E oF R G ) ) ) ) ) ) ) |
85 |
|
ovexd |
|- ( ph -> ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) e. _V ) |
86 |
|
fvex |
|- ( E ` i ) e. _V |
87 |
|
fvex |
|- ( F ` ( i - ( # ` E ) ) ) e. _V |
88 |
86 87
|
ifex |
|- if ( i e. ( 0 ..^ ( # ` E ) ) , ( E ` i ) , ( F ` ( i - ( # ` E ) ) ) ) e. _V |
89 |
88
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> if ( i e. ( 0 ..^ ( # ` E ) ) , ( E ` i ) , ( F ` ( i - ( # ` E ) ) ) ) e. _V ) |
90 |
|
fvex |
|- ( G ` i ) e. _V |
91 |
|
fvex |
|- ( H ` ( i - ( # ` G ) ) ) e. _V |
92 |
90 91
|
ifex |
|- if ( i e. ( 0 ..^ ( # ` G ) ) , ( G ` i ) , ( H ` ( i - ( # ` G ) ) ) ) e. _V |
93 |
92
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> if ( i e. ( 0 ..^ ( # ` G ) ) , ( G ` i ) , ( H ` ( i - ( # ` G ) ) ) ) e. _V ) |
94 |
|
ccatfval |
|- ( ( E e. Word S /\ F e. Word S ) -> ( E ++ F ) = ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> if ( i e. ( 0 ..^ ( # ` E ) ) , ( E ` i ) , ( F ` ( i - ( # ` E ) ) ) ) ) ) |
95 |
1 2 94
|
syl2anc |
|- ( ph -> ( E ++ F ) = ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> if ( i e. ( 0 ..^ ( # ` E ) ) , ( E ` i ) , ( F ` ( i - ( # ` E ) ) ) ) ) ) |
96 |
|
ccatfval |
|- ( ( G e. Word T /\ H e. Word T ) -> ( G ++ H ) = ( i e. ( 0 ..^ ( ( # ` G ) + ( # ` H ) ) ) |-> if ( i e. ( 0 ..^ ( # ` G ) ) , ( G ` i ) , ( H ` ( i - ( # ` G ) ) ) ) ) ) |
97 |
3 4 96
|
syl2anc |
|- ( ph -> ( G ++ H ) = ( i e. ( 0 ..^ ( ( # ` G ) + ( # ` H ) ) ) |-> if ( i e. ( 0 ..^ ( # ` G ) ) , ( G ` i ) , ( H ` ( i - ( # ` G ) ) ) ) ) ) |
98 |
5 6
|
oveq12d |
|- ( ph -> ( ( # ` E ) + ( # ` F ) ) = ( ( # ` G ) + ( # ` H ) ) ) |
99 |
98
|
oveq2d |
|- ( ph -> ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) = ( 0 ..^ ( ( # ` G ) + ( # ` H ) ) ) ) |
100 |
99
|
mpteq1d |
|- ( ph -> ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> if ( i e. ( 0 ..^ ( # ` G ) ) , ( G ` i ) , ( H ` ( i - ( # ` G ) ) ) ) ) = ( i e. ( 0 ..^ ( ( # ` G ) + ( # ` H ) ) ) |-> if ( i e. ( 0 ..^ ( # ` G ) ) , ( G ` i ) , ( H ` ( i - ( # ` G ) ) ) ) ) ) |
101 |
97 100
|
eqtr4d |
|- ( ph -> ( G ++ H ) = ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> if ( i e. ( 0 ..^ ( # ` G ) ) , ( G ` i ) , ( H ` ( i - ( # ` G ) ) ) ) ) ) |
102 |
85 89 93 95 101
|
offval2 |
|- ( ph -> ( ( E ++ F ) oF R ( G ++ H ) ) = ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> ( if ( i e. ( 0 ..^ ( # ` E ) ) , ( E ` i ) , ( F ` ( i - ( # ` E ) ) ) ) R if ( i e. ( 0 ..^ ( # ` G ) ) , ( G ` i ) , ( H ` ( i - ( # ` G ) ) ) ) ) ) ) |
103 |
5
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> ( # ` E ) = ( # ` G ) ) |
104 |
103
|
oveq2d |
|- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> ( 0 ..^ ( # ` E ) ) = ( 0 ..^ ( # ` G ) ) ) |
105 |
104
|
eleq2d |
|- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> ( i e. ( 0 ..^ ( # ` E ) ) <-> i e. ( 0 ..^ ( # ` G ) ) ) ) |
106 |
103
|
oveq2d |
|- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> ( i - ( # ` E ) ) = ( i - ( # ` G ) ) ) |
107 |
106
|
fveq2d |
|- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> ( H ` ( i - ( # ` E ) ) ) = ( H ` ( i - ( # ` G ) ) ) ) |
108 |
105 107
|
ifbieq2d |
|- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> if ( i e. ( 0 ..^ ( # ` E ) ) , ( G ` i ) , ( H ` ( i - ( # ` E ) ) ) ) = if ( i e. ( 0 ..^ ( # ` G ) ) , ( G ` i ) , ( H ` ( i - ( # ` G ) ) ) ) ) |
109 |
108
|
oveq2d |
|- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> ( if ( i e. ( 0 ..^ ( # ` E ) ) , ( E ` i ) , ( F ` ( i - ( # ` E ) ) ) ) R if ( i e. ( 0 ..^ ( # ` E ) ) , ( G ` i ) , ( H ` ( i - ( # ` E ) ) ) ) ) = ( if ( i e. ( 0 ..^ ( # ` E ) ) , ( E ` i ) , ( F ` ( i - ( # ` E ) ) ) ) R if ( i e. ( 0 ..^ ( # ` G ) ) , ( G ` i ) , ( H ` ( i - ( # ` G ) ) ) ) ) ) |
110 |
109
|
mpteq2dva |
|- ( ph -> ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> ( if ( i e. ( 0 ..^ ( # ` E ) ) , ( E ` i ) , ( F ` ( i - ( # ` E ) ) ) ) R if ( i e. ( 0 ..^ ( # ` E ) ) , ( G ` i ) , ( H ` ( i - ( # ` E ) ) ) ) ) ) = ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> ( if ( i e. ( 0 ..^ ( # ` E ) ) , ( E ` i ) , ( F ` ( i - ( # ` E ) ) ) ) R if ( i e. ( 0 ..^ ( # ` G ) ) , ( G ` i ) , ( H ` ( i - ( # ` G ) ) ) ) ) ) ) |
111 |
102 110
|
eqtr4d |
|- ( ph -> ( ( E ++ F ) oF R ( G ++ H ) ) = ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> ( if ( i e. ( 0 ..^ ( # ` E ) ) , ( E ` i ) , ( F ` ( i - ( # ` E ) ) ) ) R if ( i e. ( 0 ..^ ( # ` E ) ) , ( G ` i ) , ( H ` ( i - ( # ` E ) ) ) ) ) ) ) |
112 |
|
ovif12 |
|- ( if ( i e. ( 0 ..^ ( # ` E ) ) , ( E ` i ) , ( F ` ( i - ( # ` E ) ) ) ) R if ( i e. ( 0 ..^ ( # ` E ) ) , ( G ` i ) , ( H ` ( i - ( # ` E ) ) ) ) ) = if ( i e. ( 0 ..^ ( # ` E ) ) , ( ( E ` i ) R ( G ` i ) ) , ( ( F ` ( i - ( # ` E ) ) ) R ( H ` ( i - ( # ` E ) ) ) ) ) |
113 |
112
|
mpteq2i |
|- ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> ( if ( i e. ( 0 ..^ ( # ` E ) ) , ( E ` i ) , ( F ` ( i - ( # ` E ) ) ) ) R if ( i e. ( 0 ..^ ( # ` E ) ) , ( G ` i ) , ( H ` ( i - ( # ` E ) ) ) ) ) ) = ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> if ( i e. ( 0 ..^ ( # ` E ) ) , ( ( E ` i ) R ( G ` i ) ) , ( ( F ` ( i - ( # ` E ) ) ) R ( H ` ( i - ( # ` E ) ) ) ) ) ) |
114 |
111 113
|
eqtrdi |
|- ( ph -> ( ( E ++ F ) oF R ( G ++ H ) ) = ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> if ( i e. ( 0 ..^ ( # ` E ) ) , ( ( E ` i ) R ( G ` i ) ) , ( ( F ` ( i - ( # ` E ) ) ) R ( H ` ( i - ( # ` E ) ) ) ) ) ) ) |
115 |
68 84 114
|
3eqtr4rd |
|- ( ph -> ( ( E ++ F ) oF R ( G ++ H ) ) = ( ( E oF R G ) ++ ( F oF R H ) ) ) |